Summary

测量对三个自然水平不同的地点进行访问后的生物物理和心理压力水平

Published: June 19, 2019
doi:

Summary

本文的目的是确定访问三种不同环境后压力水平的变化,并描述根据唾液皮质醇、β-淀粉酶和心理自我报告测量来确定压力水平的方法仪器。

Abstract

对自然环境的访问与心理压力的减轻有关。虽然大多数与压力相关的研究都依赖于自我报告格式,但越来越多的研究现在纳入了与生物压力相关的激素和催化剂,如皮质醇和β-淀粉酶,以测量压力水平。这里介绍的是一个协议,用于检查在访问三个不同地点后对生物物理和心理压力水平的影响,这些地点的性质水平不同。生物物理和自我报告的心理压力水平在进入选定地点后立即测量,并在访客离开现场之前进行测量。生物物理测量方法包括研究对象在进入三个研究地点之一时提供的1-2 mL唾液样本。根据现有文献的规定,唾液在访客在地点订婚后45分钟内收集。在收集唾液后,这些样本被标记并运送到生物实验室。皮质醇是本研究中感兴趣的生物物理变量,使用 ELISA 过程与 TECAN 板读取器进行测量。为了测量自我报告的压力,感知压力问卷 (PSQ) 报告担心、紧张、喜悦和感知需求的程度。数据在傍晚至傍晚在三个地点收集。当对所有三个设置进行比较时,通过生物标记和自我报告测量的应力水平在访问到最自然的设置后明显较低。

Introduction

压力水平升高长期以来与许多严重的健康问题有关,如心脏病、肥胖和心理障碍1、2、3。越来越多的研究表明,靠近或参观自然环境,如公园和未开发景观,可以产生显著的影响心理健康和减少压力水平1,4 5,6,7,8,9,10.对自然环境和压力水平影响的解释包括:(1) 自然环境为自然环境提供场所8、11 和 (2) 自然环境的访问者能够集中注意力对更多的非任务思维过程,从而减少注意力疲劳12。为了确定自然对减压的影响,本研究利用自我报告的心理压力(PSQ)和两个基于唾液的生物标志物,皮质醇和β-淀粉酶,在访问三个不同的娱乐场所后。这些地点因”自然”程度而异,包括荒野式环境、市政公园以及当地的健身和娱乐设施。

本研究旨在解决以下研究问题:(RQ 1)与所有三个部位(即自然、半自然、构建)进行比较时,唾液皮质醇和β-淀粉酶测量的生物物理应力水平是否有差异?(RQ2)与所有三个地点(即自然、半自然、建筑)相比,PSQ衡量的心理压力水平是否有差异(表现为四种结构:需求、忧虑、紧张和喜悦)?

Protocol

本研究遵循印第安纳大学机构审查委员会人类研究保护计划的政策和指导方针。 1. 位置选择 根据不同的自然级别选择站点数 (n)。注:我们选择了三个网站为我们的工作。A地块采用基于”自然性”水平的连续体,被认为是最自然的,由大约1,200英亩的林地山脊组成,毗邻湖泊,位于落叶林中。最常见的活动包括散步和观赏野生动物。站点 B 是一个占地 33 英亩的市政公园,设有?…

Representative Results

示例说明利用配额抽样技术,这项研究从三个地点分别招募了35名访问者。在这项研究中共招募了105名受试者,包括63名男性和42名女性。从三个不同地点招募的访问者的平均年龄分别为25.9岁(网站A)、37.2岁(网站B)和28.8岁(网站C)。还记录了受试者访问选定三个地点的频率。对于站点 A 和站点 C,大多数受试者每周访问此站点一到三次。对于B站点的受试者,他们的访问频率平均为每周一至三…

Discussion

本研究的目的是利用生物物理和心理工具,在娱乐访问后,确定压力的潜在变化,这些环境具有不同的自然水平。皮质醇和β-淀粉酶已被证明是心理压力水平的可靠指标。本研究中描述的淀粉酶测定程序已适应96井格式。当唾液中的淀粉酶水平高时,吸收性变化迅速发生。因此,限制一次分析的样本数量至关重要,因为一次可以分析的样本数量受每个井中 2.5 μL 的可添加速度的限制。在这项研究中,淀粉酶?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究部分资金来自印第安纳州布卢明顿印第安纳大学公共卫生学院赞助的教师研究资助计划(FRGP)。作者要感谢艾莉森·沃伊特博士和梅丽莎·佩奇博士的编辑协助和建设性意见。

Materials

Cortisol Enzyme Immunoassay Kit DetectX K003-H1 The Cortisol Enzyme Immunoassay kit is designed to quantitatively measure cortisol present in dried fecal extracts, saliva, urine, serum, plasma and culture media samples.
Cryogenic Labels for Cryogenic Storage Fisherbrand 5-910-A Unique adhesive withstands extreme temperature
Liquid Amylase (CNPG3) Reagent Set Pointe Scientific A7564 For the quantitative kinetic determination of α-amylase activity in human serum.
Round Bottom 2mL Polypropylene Tubes with External Thread Cap Greiner Bio-One 07-000-257 2.0 ml U-BTM Cryo.s self standing polypropylene sterilized
Synergy Multi-Mode Microplate Reader BioTek It is a single-channel absorbance, fluorescence, and luminescence microplate reader that uses a dual-optics design to perform measurements of samples in a microplate format.

References

  1. Hansmann, R., Hug, S., Seeland, K. Restoration and stress relief through physical activities in forests and parks. Urban Forestry and Urban Greening. 6, 213-225 (2007).
  2. Krantz, D. S., McCeney, M. K. Effects of psychological and social factors on organic disease: A critical assessment of research on coronary heart disease. Annual Review of Psychology. 53, 341-369 (2002).
  3. Ward Thompson, C., et al. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landscape and Urban Planning. 105, 221-229 (2012).
  4. Haluza, D., Schonbauer, R., Cervinka, R. Green perspectives for public health: A narrative on the physiological effects of experiencing outdoor nature. International Journal of Environmental Research and Public Health. 11, 5445-5461 (2014).
  5. Korpela, K. M., Ylen, M., Tyrväinen, L., Silvennomen, H. Determinants of restorative experiences in everyday favorite places. Health and Place. 14, 636-652 (2008).
  6. Mantler, A., Logan, A. C. Natural environments and mental health. Advances in Integrative Medicine. 2, 5-12 (2015).
  7. Mayer, F. S., McPherson-Frantz, C., Bruehlman-Senecal, E., Dolliver, K. Why is nature beneficial? the role of connectedness to nature. Environment and Behavior. 41, 307-643 (2009).
  8. Pretty, J., Peacock, J., Sellens, M., Griffin, M. The mental and physical health outcomes of green exercise. International Journal of Environal Health Research. 15, 319-337 (2005).
  9. Ulrich, R., et al. Stress recovery during exposure to natural and urban environments. Journal of Environmental Psychology. 11, 201-230 (1991).
  10. Kaplan, S., Talbot, J. F., Altman, I., Wohlwill, J. F. Psychological Benefits of a Wilderness Experience. Behavior and the Natural Environment. , 163-203 (1983).
  11. Salmon, P. Effects of physical exercise on anxiety, depression, and sensitivity to stress: A unifying theory. Clinical Psychology Review. 21, 33-61 (2001).
  12. Focht, B. C. Brief walks in outdoor and laboratory environments: Effects on affective responses, enjoyment, and intentions to walk for exercise. Research Quarterly for Exercise and Sport. 80, 611-620 (2009).
  13. Fliege, H., et al. The Perceived Stress Questionnaire (PSQ) reconsidered: Validation and reference values from different clinical and healthy adult samples. Psychosomatic Medicine. 67, 78-88 (2005).
  14. Kirschbaum, C., Hellhammer, D. H. Salivary cortisol in psychoneuronendocrine research: Recent developments and applications. Psychoneuroendocrinology. 19, 313-333 (1994).
  15. Gallacher, D. V., Petersen, O. H. Stimulus-secretion coupling in mammalian salivary glands. International Reviews in Physiology. 28, 1-52 (1983).
  16. Slosnik, R. T., Chatterton, R. T., Swisher, T., Par, S. Modulation of attentional inhibition by norepinephrine and cortisol after psychological stress. International Journal of Psychophysiology. 36, 59-68 (2000).
  17. Nater, U. M., et al. Stress-induced changes in human salivary alpha-amylase activity-associations with adrenergic activity. Psychoneuroendocrinology. 31 (1), 49-58 (2006).
  18. Takai, N., et al. Effect of psychological stress on the salivary cortisol and amylase levels in healthy young adults. Archives of Oral Biology. 49 (12), 963-968 (2004).
  19. Shirtcliff, E. A., Granger, D. A., Schwatz, E., Curran, M. J. Use of salivary biomarkers in biobehavioral research: Cotton based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology. 26, 165-173 (2001).
  20. Nater, U. M., et al. Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. Journal of Psychophysiology. 55 (3), 333-342 (2005).
  21. Granger, D. A., et al. Integration of salivary biomarkers into developmental and behaviorally-oriented research: Problems and solutions for collecting specimens. Physiology and Behavior. 92, 583-590 (2007).
  22. Frumkin, H. Beyond toxicity: Human health and the natural environment. American Journal of Preventive Medicine. 20, 234-240 (2001).
  23. Hartig, T., Mitchell, R., de Vries, S., Frumkin, H. Nature and health. Annual Review of Public Health. 35, 207-228 (2014).
  24. Gidlow, C. J., et al. Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments. Journal of Environmental Psychology. 45, 22-29 (2016).
  25. Ewert, A., Chang, Y. Levels of nature and stress response. Behavioral Sciences. 8 (5), 49 (2018).
  26. Wyles, K. J., et al. Are some natural environments more psychologically beneficial than others? The importance of type and quality on connectedness to nature and psychological restoration. Environment and Behavior. 51 (2), 111-143 (2019).
check_url/cn/59272?article_type=t

Play Video

Cite This Article
Chang, Y., Ewert, A., Kamendulis, L. M., Hocevar, B. A. Measuring Biophysical and Psychological Stress Levels Following Visitation to Three Locations with Differing Levels of Nature. J. Vis. Exp. (148), e59272, doi:10.3791/59272 (2019).

View Video