Summary

A Cross-Disciplinary and Multi-Modal Experimental Design for Studying Near-Real-Time Authentic Examination Experiences

Published: September 04, 2019
doi:

Summary

An experimental design was developed to investigate the real-time influences of an examination experience to assess the emotional realities students experience in higher education settings and tasks. This design is the result of a cross-disciplinary (e.g., educational psychology, biology, physiology, engineering) and multi-modal (e.g., salivary markers, surveys, electrodermal sensor) approach.

Abstract

Over the past ten years, research into students' emotions in educational environments has increased. Although researchers have called for more studies that rely on objective measures of emotional experience, limitations on utilizing multi-modal data sources exist. Studies of emotion and emotional regulation in classrooms traditionally rely on survey instruments, experience-sampling, artifacts, interviews, or observational procedures. These methods, while valuable, are mainly dependent on participant or observer subjectivity and is limited in its authentic measurement of students' real-time performance to a classroom activity or task. The latter, in particular, poses a stumbling block to many scholars seeking to objectively measure emotions and other related measures in the classroom, in real-time.

The purpose of this work is to present a protocol to experimentally study students' real-time responses to exam experiences during an authentic assessment situation. For this, a team of educational psychologists, engineers, and engineering education researchers designed an experimental protocol that retained the limits required for accurate physiological sensor measurement, best-practices of salivary collection, and an authentic testing environment. In particular, existing studies that rely on physiological sensors are conducted in experimental environments that are disconnected from educational settings (e.g., Trier Stress Test), detached in time (e.g., before or after a task), or introduce analysis error (e.g., use of sensors in environments where students are likely to move). This limits our understanding of students' real-time responses to classroom activities and tasks. Furthermore, recent research has called for more considerations to be covered around issues of recruitment, replicability, validity, setups, data cleaning, preliminary analysis, and particular circumstances (e.g., adding a variable in the experimental design) in academic emotions research that relies on multi-modal approaches.

Introduction

Psychologists have long understood the importance of humans' emotions in elucidating their behaviors1. Within the study of education, Academic Achievement Emotions (AEE) has become the focus of emotion research2. Researchers that use AAE argue that the situational contexts students find themselves in are important to consider when examining students' emotions. Students may experience test-related, class-related, or learning-related emotions that involve multi-component processes, including affective, physiological, motivational, and cognitive components. AEE is expressed in two forms: valence (positive/negative) and activation (focused/unfocused energy). Positive activating emotions, such as enjoyment, may increase reflective processes like metacognition, whereas positive deactivating emotions such as pride may result in low levels of cognitive processing. Negative activating emotions such as anger and anxiety may spark engagement, whereas negative deactivating emotions such as hopelessness may dampen motivation3,4,5. Academic emotions contribute to how we learn, perceive, decide, respond, and problem-solve2. To regulate academic emotions, an individual must possess self-efficacy (SE)6,7,8, which is their confidence in their ability to employ control over their motivation, behavior, and social environment6. Self-efficacy and academic emotions are interrelated, where lower self-efficacy is tied to negative deactivating emotions (e.g., anxiety, anger, boredom) and higher self-efficacy is tied to positive activating emotions (e.g., happiness, hope, excitement)6,7,8. SE is also believed to be strongly tied to performance6,7,8.

Research that has examined classroom emotions have relied on self-reports, observations, interviews, and artifacts (e.g., exams, projects)9,10. Although these methods provide rich contextual information about students' classroom experiences, they have significant limitations. For example, interviews, observations, and self-reports rely on individuals' introspections10. Other methods have sought to examine academic emotions more proximally than prior researchers, such as those based on experience-sampling approaches where researchers ask students to report on their emotions during the school day11. Although this research allows us to report students' emotions more accurately, this work relies on self-report methods and does not allow for real-time reporting as students have to pause their work on the exam to address the experience survey.

Recently, researchers have begun to address concerns about self-report measures through the use of biological or physiological measures of emotion9, that combined with other instruments or techniques such as surveys, observations, or interviews, consists of a multi-modal form of data collection for educational and psychological research12. For example, biological techniques, including salivary biomarkers, are being used to understand the role biological processes have on cognition, emotion, learning, and performance13,14,15. For cognitive processes, androgens (e.g., testosterone) have been linked to different spatial recognition patterns in adults and children16,17 whereas hypothalamic-pituitary-adrenocortical hormones (e.g., cortisol) and adrenergic hormones (e.g., salivary α-amylase or sAA) are linked to stress responsiveness amongst individuals18,19,20.

Electrodermal activity (EDA) represents a physiological measure of the activation of the autonomic nervous system (ANS) and is linked to increased activation of the system, cognitive load, or intense emotional responses21,22,23. In examination activities, EDA is affected by physical mobility21,22, bodily and ambient temperatures24,25,26,27, and verbalization of thoughts28, as well as sensitivity and degree of connectivity of the analog-digital electrodes to the skin29.

Although these can be limitations to using EDA, this technique can still provide valuable insight into what happens during near-real-time examinations and can serve as a promising tool to explore AEE and by extent, self-efficacy. As a result, an accurate picture of students' AEE can be obtained through a combination of survey methods, to determine the valence of emotion, and physiological and biological data, to measure the activation of that emotion. This paper builds upon a previous publication on examination activities30 and expands the scope of that work to include multi-modal approaches (using experience-sampling surveys, EDA sensors, and salivary biomarkers) in an examination scenario. It is essential to mention that the protocol described below allows for multiple participant data to be collected at the same time within a single experimental setting.

Protocol

Procedures were approved by the Institutional Review Board (IRB) under a general review at Utah State University for studies on human subjects and use of these constructs. The typical results include two semesters of an engineering statics course, each with a slightly different experimental setup, at a western institution of higher education in the United States. Practice exams, whose content paralleled the actual exams, were developed by the course instructor and were used for our study. Please note that the protoc…

Representative Results

In this study, we were interested in studying the influences of self-efficacy, performance, and physiological (EDA sensors) and biological (sAA and cortisol) responses of undergraduate engineering students as they took a practice exam. The data shown is a representative subset of samples: (a) one that considered surveys and electrodermal sensors (experiment design A) and (b) one that included the same exam along with the salivary biomarker data (experiment design B). While we collected em…

Discussion

Although physiological measures have been used in many authentic learning contexts, it is critical to design a study environment that is mindful of the limits of the current technology. Our design balances the need for an authentic testing environment and accommodates the technology. Comfortably limiting participant movement, reducing unintended interruptions, and timestamping participants' testing responses are all critical steps within the protocol.

The space and expense of the electrode…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This material is based upon work supported in part by the National Science Foundation (NSF) No. EED-1661100 as well as an NSF GRFP grant given to Darcie Christensen (No. 120214). Any opinions, findings, and conclusions or recommendations expressed in this material do not necessarily reflect those of NSF or USU. We want to thank Sheree Benson for her kind discussions and recommendations for our statistical analysis.

Author contributions in this paper are as follows: Villanueva (research design, data collection and analysis, writing, editing); Husman (research design, data collection, writing, editing); Christensen (data collection and analysis, writing, editing); Youmans (data collection and analysis, writing, and editing); Khan (data collection and analysis, writing, editing); Vicioso (data collection and analysis, editing); Lampkins (data collection and editing); Graham (data collection and editing)

Materials

1.1 cu ft medical freezer Compact Compliance # bci2801863 They can use any freezer as long as it can go below -20 degrees Celsius; these can be used to store salivary samples for longer periods of time (~4 months) before running salivary assays.
Camping Cooler Amazon (any size/type) Can be used to store salivary samples during data collection
E4 sensor Empatica Inc E4 Wristband Rev2 You can use any EDA sensor or company as long as it records EDA and accelerometry
EDA Explorer https://eda-explorer.media.mit.edu/ (open-source) Can be used to identify potential sources of noise that are not necessarily due to movement
Laptops Dell Latitude 3480 They can use any desktop or laptop
Ledalab http://www.ledalab.de/ (open-source) Can be used to separate tonic and phasic EDA signals after following filtration steps
MATLAB https://www.mathworks.com/products/matlab.html (version varies according to updates) To be used for Ledalab, EDA Explorer, and to create customized time-stamping programs.
Salivary Alpha Amylase Enzymatic Kit Salimetrics ‎# 1-1902 For the salivary kits, you should plan to either order the company to analyze your samples and/or go to a molecular biology lab for processing
Salivary Cortisol ELISA Kit Salimetrics # ‎1-3002 For the salivary kits, you should plan to either order the company to analyze your samples and/or go to a molecular biology lab for processing
Testing Divider (Privacy Shields) Amazon #60005 They can use any brand of testing shield as long as they cover the workspace
Web Camera Amazon Logitech c920 They can use any web camera as long as it is HD and 1080p or greater

References

  1. William, J. What is an emotion?. Mind. 9 (34), 188-205 (1884).
  2. Pekrun, R., Linnenbrink-Garcia, L., Pekrun, R., Linnenbrink-Garcia, L. Emotions in education: Conclusions and future directions. International handbook of emotions in education. , 659-675 (2014).
  3. Pekrun, R. The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review. 18 (4), 315-341 (2006).
  4. Pekrun, R., Perry, R. P. Control-value theory of achievement emotions. International Handbook of Emotions in Education. , 120-141 (2014).
  5. Pekrun, R., Stephens, E. J., Harris, K. R. Academic emotions. APA Educational Psychology Handbook. , 3-31 (2011).
  6. Bandura, A. . Self-efficacy: The exercise of control. , (1997).
  7. Bandura, A. . Social foundations of thought and action: A social cognitive theory. , (1986).
  8. Bandura, A., Pajares, F., Urdan, T. Guide for constructing self-efficacy scales. Self-efficacy beliefs of adolescents. , 307-337 (2006).
  9. Jarrell, A., Harley, J. M., Lajoie, S., Naismith, L. Success, failure and emotions: examining the relationship between performance feedback and emotions in diagnostic reasoning. Educational Technology Research and Development. 65 (5), 1263-1284 (2017).
  10. Pekrun, R., Bühner, M., Pekrun, R., Linnenbrink-Garcia, L. Self-report measures of academic emotions. International Handbook of Emotions in Education. , 561-566 (2014).
  11. Nett, U. E., Goetz, T., Hall, N. C. Coping with boredom in school: An experience sampling perspective. Contemporary Educational Psychology. 36 (1), 49-59 (2011).
  12. Azevedo, R. Defining and measuring engagement and learning in science: Conceptual, theoretical, methodological, and analytical issues. Educational Psychologist. 50 (1), 84-94 (2015).
  13. Spangler, G., Pekrun, R., Kramer, K., Hofman, H. Students’ emotions, physiological reactions, and coping in academic exams. Anxiety, Stress, & Coping. 15 (4), 413-432 (2002).
  14. Husman, J., Cheng, K. C., Puruhito, K., Fishman, E. J. Understanding engineering students stress and emotions during an introductory engineering course. American Society of Engineering Education. , (2015).
  15. Vedhara, K., Hyde, J., Gilchrist, I., Tytherleigh, M., Plummer, S. Acute stress, memory, attention and cortisol. Psychoneuroendocrinology. 25 (6), 535-549 (2000).
  16. Berenbaum, S. A., Moffat, S., Wisniewski, A., Resnick, S., de Haan, M., Johnson, M. H. Neuroendocrinology: Cognitive effects of sex hormones. The Cognitive Neuroscience of Development: Studies in Developmental Psychology. , 207-210 (2003).
  17. Lundberg, U., Frankenhaeuser, M. Pituitary-adrenal and sympathetic-adrenal correlates of distress and effort. Journal of Psychosomatic Research. 24 (3-4), 125-130 (1980).
  18. Nater, U. M., Rohleder, N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology. 34 (4), 486-496 (2009).
  19. Denson, T., Spanovic, M., Miller, N., Cooper, H. Cognitive appraisals and emotions predict cortisol and immune responses: A meta-analysis of acute laboratory social stressors and emotion inductions. Psychological Bulletin. 135 (6), 823-853 (2009).
  20. Van Stegeren, A. H., Wolf, O. T., Kindt, M. Salivary alpha amylase and cortisol responses to different stress tasks: Impact of sex. International Journal of Psychophysiology. 69 (1), 33-40 (2008).
  21. Benedek, M., Kaernbach, C. A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods. 190 (1), 80-91 (2010).
  22. Boucsein, W., Backs, R. W., Backs, R. W., Boucsein, W. Engineering psychophysiology as a discipline: Historical and theoretical aspects. Engineering psychophysiology. Issues and applications. , 3-30 (2000).
  23. Boucsein, W., Backs, R. W., Duffy, V. G. The psychophysiology of emotion, arousal, and personality: Methods and models. Handbook of digital human modeling. , 35-38 (2009).
  24. Turpin, G., Shine, P., Lader, M. H. Ambulatory electrodermal monitoring: effects of ambient temperature, general activity, electrolyte media, and length of recording. Psychophysiology. 20, 219-224 (1983).
  25. Posada-Quintero, H. F., et al. Timevarying analysis of electrodermal activity during exercise. PLoS ONE. 13 (6), e0198328 (2018).
  26. Lobstein, T., Cort, J. The relationship between skin temperature and skin conductance activity: Indications of genetic and fitness determinants. Biological Psychology. 7, 139-143 (1978).
  27. Scholander, T. Some measures of electrodermal activity and their relationships as affected by varied temperatures. Journal of Psychosomatic Research. 7, 151-158 (1963).
  28. Schwerdtfeger, A. Predicting autonomic reactivity to public speaking: don’t get fixed on self-report data!. International Journal of Psychophysiology. 52 (3), 217-224 (2004).
  29. Braithwaite, J. J., Watson, D. G., Jones, R., Rowe, M. A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments. Psychophysiology. 49 (1), 1017-1034 (2013).
  30. Villanueva, I., Valladares, M., Goodridge, W. Use of galvanic skin responses, salivary biomarkers, and self-reports to assess undergraduate student performance during a laboratory exam activity. Journal of Visualized Experiments. (108), e53255 (2016).
  31. Empatica, . E4 wristband from Empatica: User’s manual. Empatica. , 1-32 (2018).
  32. Salimetrics, . Collection methods: Passive drool using the saliva collection aid. Salimetrics Technical Summary. , 1-2 (2018).
  33. Salimetrics, . Collection methods: Passive drool using the saliva collection aid. Salimetrics Technical Summary. , 1-2 (2018).
  34. Salimetrics, . Expanded range high sensitivity salivary cortisol enzyme immunoassay kit. Salimetrics Technical Summary. , 1-21 (2016).
  35. Salimetrics, . Salivary α-amylase kinetic enzyme assay kit. Salimetrics Technical Summary. , 1-17 (2016).
  36. . Innovative Hormone Testing: Saliva Test Specifications, ZRT Laboratory Reports Available from: https://www.zrtlab.com/resources/ (2014)
  37. Call, B., Goodridge, W., Villanueva, I., Wan, N., Jordan, K. Utilizing electroencephalography measurements for comparison of task-specific neural efficiencies: spatial intelligence tasks. Journal of Visualized Experiments. (114), (2016).
  38. Ruel, E. E., Wagner, W. E., Gillespie, B. J. . The practice of survey research: theory and applications. , (2016).
  39. Barrett, P. Euclidean distance: raw, normalized, and double-spaced coefficients. The Technical Whitepaper Series. 6, 1-26 (2005).
  40. Groeneveld, R. A. Influence functions for the coefficient of variation, its inverse, and CV comparisons. Communications in Statistics- Theory and Methods. 40 (23), 4139-4150 (2011).
  41. Tronstad, C., Staal, O. M., Sælid, S., Martinsen, &. #. 2. 1. 6. ;. G. Model-based filtering for artifact and noise suppression with state estimation for electrodermal activity measurements in real time. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , 2750-2753 (2015).
  42. Routray, A., Pradhan, A. K., Rao, K. P. A novel Kalman filter for frequency estimation of distorted signals in power systems. IEEE Transactions on Instrumentation and Measurement. 51 (3), 469-479 (2002).
  43. Benedek, M., Kaernbach, C. A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods. 190, 80-91 (2010).
  44. Taylor, S., et al. Automatic Identification of Artifacts in Electrodermal Activity Data. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , 1934-1937 (2015).
  45. Andreasson, U., et al. A practical guide to immunoassay method validation. Frontiers in Neurology. 6 (179), 1-8 (2015).
  46. Adam, E. K., Kumari, M. Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology. 34 (10), 1423-1436 (2009).
  47. Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., Hellhammer, D. H. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology. 28 (7), 916-931 (2003).
  48. Girden, E. R. . ANOVA: Repeated measures. , (1992).
  49. Raudenbush, S. W., Bryk, A. S. . Hierarchical linear models: Applications and data analysis methods (Vol. 1). , (2002).
  50. Duncan, T. E., Duncan, S. C., Strycker, L. A. . An introduction to latent variable growth curve modeling: Concepts, issues, and application. , (2013).
  51. Mehta, P. D., West, S. G. Putting the individual back into individual growth curves. Psychological Methods. 5 (1), 23-43 (2000).
  52. Khan, M. T. H., Villanueva, I., Vicioso, P., Husman, J. Exploring relationships between electrodermal activity, skin temperature, and performance during engineering exams. , (Accepted).
  53. Christensen, D., Khan, M. T. H., Villanueva, I., Husman, J. Stretched Too Much? A Case Study of Engineering Exam-Related Predicted Performance, Electrodermal Activity, and Heart Rate. , (Accepted).
check_url/cn/60037?article_type=t

Play Video

Cite This Article
Villanueva, I., Husman, J., Christensen, D., Youmans, K., Khan, M. T., Vicioso, P., Lampkins, S., Graham, M. C. A Cross-Disciplinary and Multi-Modal Experimental Design for Studying Near-Real-Time Authentic Examination Experiences. J. Vis. Exp. (151), e60037, doi:10.3791/60037 (2019).

View Video