Summary

通过配体辅助再沉淀对胶体铅卤化物的可理解合成

Published: October 01, 2019
doi:

Summary

本成果通过配体辅助再沉淀法,演示了胶体量子密闭铅卤化物过诺维特纳米血小板的易感室温合成。合成纳米孔通过改变组成和厚度,在整个可见范围内显示光谱狭窄的光学特征和连续光谱可调谐性。

Abstract

在这项工作中,我们演示了胶体铅卤化物过氨血层合成的易制方法(化学公式:L2[ABX3]n-1BX4, L: 丁二胺和八角胺, A: 甲基铵或通过配体辅助再沉淀,在纳米血小板厚度方向上,溴化物和碘化物,n:[BX6]4-八面体层的数量。 通过溶解N、N-二甲基甲酰胺(DMF)中的每个纳米血小板成分盐(DMF),即一种极性有机溶剂,然后以特定比例混合靶向纳米血小板厚度和组合物,制备单个perovskite前体溶液。一旦混合前体溶液落入非极性甲苯,溶解度的突然变化就诱导纳米血小板的瞬时结晶,表面粘结的卤化烷基胺配体提供胶体稳定性。光致发光和吸收光谱揭示了发射和强量子限制特性。X射线衍射和透射电子显微镜证实了纳米小板的二维结构。此外,我们还表明,通过改变卤化物孔的孔粒数,可以连续调整在可见范围内的超氧化物纳米血小板的带隙。最后,通过引入多种物种作为表面封布配体,演示了配体辅助再沉淀方法的灵活性。该方法代表了制备发射2D胶体半导体分散体的简单过程。

Introduction

在过去的十年中,制造含卤素的太阳能电池1,2,3,4,5,6有效地突出了这一半导体材料,包括长载波扩散长度7,8,9,10,成分可调4,5,11和低成本综合12.特别是缺陷容差13、14的独特性质,使卤素铅与其他半导体有着根本的不同,因此在下一代光电子应用中大有希望。

除太阳能电池外,还展示了卤化物,可以制造出一流的光电子器件,如发光二极管6、15、16、17、18、19,20,21,22, 激光23,24,25,和光电探测器26,27 28.特别是,当以胶体纳米晶体的形式制备时,18,29,30,31,32,33,34, 35,36,37,38,39,40,41,42,43, 领先卤化物可能表现出强量子和介电结合,大兴奋结合能44,45,和明亮的发光17,19以及易感溶液加工。各种报告的几何形状包括量子点29,30,31,32,纳米棒33,34和纳米血小板18, 35,36,37,38,39,40,4143进一步展示了形状的可调谐性铅卤化物过诺夫斯基特纳米晶体。

在这些纳米晶体中,胶体二维(2D)铅卤化物,或”perovskite纳米血小板”,由于电荷载体的强约束,大兴奋结合能量达到,在发光应用中尤其大有前途。高达数百meV44,和光谱狭窄的发射从厚度纯集合的纳米血小板39。此外,报告为 2D perovskite 纳米晶体46和其他 2D 半导体47、48的各向异性发射突出了从基于 perovskite 纳米血小板的分离效率最大化的潜力发光设备。

在这里,我们演示了一种通过配体辅助再沉淀技术36、38、49对胶体铅卤化物的室温合成的简单、通用的室温合成方案。演示了含有碘化物和/或溴化卤化物的苯丙胺、甲基铵或甲烷有机阳离子以及可变有机表面配体的Perovskite纳米血小板。讨论了胶体分散体的吸收和排放能量控制程序和厚度纯度。

Protocol

注: 此处将分别使用”n = 1 BX”和”n = 2 ABX”的更简单表示法,而不是 L2BX4和 L2[ABX3+ BX4]的复杂化学公式。为了更好的稳定性和光学性能的结果过氧化物纳米血小板,建议在惰性条件下完成整个过程49(即氮手套箱)。 1. 制备过氧化物纳米血小板前体溶液 制备0.2 M甲基溴铵溶液(MABr)、溴化溴化二甲苯…

Representative Results

对过氧化物纳米血小板和合成过程的图解说明了材料和合成细节的概述(图1)。环境光和紫外线下胶体过胶体纳米血小板溶液的图片(图2)结合光致发光和吸收光谱(图3)进一步证实了纳米血小板的发射和吸收特性。TEM图像(图4)和XRD图案(图5)分别用于估计纳米血小板的横向尺?…

Discussion

这种合成的产物是胶体铅卤化物纳米血小板,由卤化铝表面配体覆盖(图1a)。图1b演示了胶体过氧化物纳米血小板通过配体辅助再沉淀的合成过程。总之,成份前体盐溶解在极性溶剂DMF中,其比重为所需的厚度和成分,然后注入非极性的苯。由于溶解度的突然变化,胶体过氧化物纳米血小板开始瞬间结晶。在制备混合前体溶液时,组成前体之间的比率…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国能源部、科学办公室、基础能源科学办公室(BES)的支持,奖励编号为DE-SC0019345。郑坤豪获得关中教育基金会海外博士计划奖学金的部分支持。这项工作利用了麻省理工学院的MRSEC共享实验设施,由美国国家科学基金会支持,奖励编号为DMR-08-19762。我们感谢埃里克·鲍尔斯协助打样和编辑。

Materials

Equipment
365nm fiber-coupled LED Thorlabs M365FP1 Excitation source (Photoluminescence)
Avantes fiber-optic spectrometer Avantes AvaSpec-2048XL Photoluminescence detector (Photoluminescence spectra)
Cary 5000 Agilent Technologies UV-Vis spectrophotometer (Absorption spectra)
FEI Tecnai G2 Spirit Twin TEM FEI Company Transmission electron microscopy (TEM) operating at 120kV
PANalytical X'Pert Pro MPD Malvern Panalytical X-ray diffraction (XRD) operating at 45 kV and 40 mA with a copper radiation source.
Materials
n-butylammonium bromide (BABr) GreatCell Solar MS305000-50G
n-butylammonium chloride (BACl) Fisher Scientific B071025G butylamine hydrochloride
n-butylammonium iodide (BAI) Sigma-Aldrich 805874-25G
N,N-dimethylforamide (DMF) Sigma-Aldrich 227056-1L Anhydrous, 99.8%
n-dodecylammonium bromide (DDABr) GreatCell Solar MS300880-05
formamidinium bromide (FABr) GreatCell Solar MS350000-100G
formamidinium iodide (FAI) GreatCell Solar MS150000-100G
n-hexylammonium bromide (HABr) GreatCell Solar MS300860-05
lead bromide (PbBr2) Sigma-Aldrich 398853-5G .99.999%
lead chloride (PbCl2) Sigma-Aldrich 268-690-5G 98%
lead iodide (PbI2) solution Sigma-Aldrich 795550-10ML 0.55M in DMF
methylammonium bromide (MABr) GreatCell Solar MS301000-100G
methylammonium iodide (MAI) GreatCell Solar MS101000-100G
n-octylammonium bromide (OABr) GreatCell Solar MS305500-50G
n-octylammonium chloride (OACl) Fisher Scientific O04841G octylamine hydrochloride
n-octylammonium iodide (OAI) GreatCell Solar MS105500-50G
iso-pentylammonium bromide (i-PABr) GreatCell Solar MS300710-05
toluene Sigma-Aldrich 244511-1L Anhydrous, 99.8%

References

  1. Kim, H. S., et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports. 2, 591 (2012).
  2. Zhou, H., et al. Interface engineering of highly efficient perovskite solar cells. Science. 345 (6196), 542-546 (2014).
  3. Yang, W. S., et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science. 356 (6345), 1376-1379 (2017).
  4. Saliba, M., et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science. 9 (6), 1989-1997 (2016).
  5. Jeon, N. J., et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature. 517 (7535), 476-480 (2015).
  6. Stranks, S. D., Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology. 10 (5), 391-402 (2015).
  7. Ma, L., et al. Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. Journal of the American Chemical Society. 138 (44), 14750-14755 (2016).
  8. Dong, Q., et al. Electron-hole diffusion lengths> 175 μm in solution grown CH3NH3PbI3 single crystals. Science. 347 (6225), 967-970 (2015).
  9. Stranks, S. D., et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science. 342 (6156), 341-344 (2013).
  10. Shi, D., et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science. 347 (6221), 519-522 (2015).
  11. McMeekin, D. P., et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science. 351 (6269), 151-155 (2016).
  12. Saidaminov, M. I., et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications. 6, 7586 (2015).
  13. Kovalenko, M. V., Protesescu, L., Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science. 358 (6364), 745-750 (2017).
  14. Akkerman, Q. A., Rainò, G., Kovalenko, M. V., Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Materials. 17, 394-405 (2018).
  15. Gangishetty, M. K., Hou, S., Quan, Q., Congreve, D. N. Reducing Architecture Limitations for Efficient Blue Perovskite Light-Emitting Diodes. Advanced Materials. 30 (20), 1706226 (2018).
  16. Congreve, D. N., et al. Tunable Light-Emitting Diodes Utilizing Quantum-Confined Layered Perovskite Emitters. ACS Photonics. 4 (3), 476-481 (2017).
  17. Kumar, S., et al. Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates. Nano Letters. 17 (9), 5277-5284 (2017).
  18. Kumar, S., et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano. 10 (10), 9720-9729 (2016).
  19. Pan, J., et al. Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. Journal of the American Chemical Society. 140 (2), 562-565 (2018).
  20. Kim, Y. H., et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Advanced Materials. 27 (7), 1248-1254 (2015).
  21. Pan, J., et al. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering. Advanced Materials. 28 (39), 8718-8725 (2016).
  22. Tsai, H., et al. Stable Light-Emitting Diodes Using Phase-Pure Ruddlesden–Popper Layered Perovskites. Advanced Materials. 30 (6), 1704217 (2018).
  23. Sutherland, B. R., Hoogland, S., Adachi, M. M., Wong, C. T., Sargent, E. H. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano. 8 (10), 10947-10952 (2014).
  24. Deschler, F., et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. The Journal of Physical Chemistry Letters. 5 (8), 1421-1426 (2014).
  25. Zhu, H., et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials. 14 (6), 636-642 (2015).
  26. Fang, Y., Huang, J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Advanced Materials. 27 (17), 2804-2810 (2015).
  27. Shen, L., et al. A Self-Powered, Sub-nanosecond-Response Solution-Processed Hybrid Perovskite Photodetector for Time-Resolved Photoluminescence-Lifetime Detection. Advanced Materials. 28 (48), 10794-10800 (2016).
  28. Dou, L., et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications. 5, 5404 (2014).
  29. Protesescu, L., et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX(3), X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters. 15 (6), 3692-3696 (2015).
  30. Schmidt, L. C., et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. Journal of the American Chemical Society. 136 (3), 850-853 (2014).
  31. Imran, M., et al. Shape-Pure, Nearly Monodispersed CsPbBr3 Nanocubes Prepared Using Secondary Aliphatic Amines. Nano Letters. 18 (12), 7822-7831 (2018).
  32. Dong, Y., et al. Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium. Nano Letters. 18 (6), 3716-3722 (2018).
  33. Sun, S., Yuan, D., Xu, Y., Wang, A., Deng, Z. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano. 10 (3), 3648-3657 (2016).
  34. Zhang, D., Eaton, S. W., Yu, Y., Dou, L., Yang, P. Solution-phase synthesis of cesium lead halide perovskite nanowires. Journal of the American Chemical Society. 137 (29), 9230-9233 (2015).
  35. Weidman, M. C., Goodman, A. J., Tisdale, W. A. Colloidal halide perovskite nanoplatelets: An exciting new class of semiconductor nanomaterials. Chemistry of Materials. 29 (12), 5019-5030 (2017).
  36. Sichert, J. A., et al. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Letters. 15 (10), 6521-6527 (2015).
  37. Bohn, B. J., et al. Boosting Tunable Blue Luminescence of Halide Perovskite Nanoplatelets through Postsynthetic Surface Trap Repair. Nano Letters. 18 (8), 5231-5238 (2018).
  38. Weidman, M. C., Seitz, M., Stranks, S. D., Tisdale, W. A. Highly Tunable Colloidal Perovskite Nanoplatelets Through Variable Cation, Metal, and Halide Composition. ACS Nano. 10 (8), 7830-7839 (2016).
  39. Bekenstein, Y., Koscher, B. A., Eaton, S. W., Yang, P., Alivisatos, A. P. Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. Journal of the American Chemical Society. 137 (51), 16008-16011 (2015).
  40. Shamsi, J., et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. Journal of the American Chemical Society. 138 (23), 7240-7243 (2016).
  41. Vybornyi, O., Yakunin, S., Kovalenko, M. V. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals. Nanoscale. 8 (12), 6278-6283 (2016).
  42. Huang, H., et al. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Materials. 8 (11), e328 (2016).
  43. Tyagi, P., Arveson, S. M., Tisdale, W. A. Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement. J Phys Chem Lett. 6 (10), 1911-1916 (2015).
  44. Saidaminov, M. I., Mohammed, O. F., Bakr, O. M. Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Letters. 2 (4), 889-896 (2017).
  45. Zheng, K., et al. Exciton binding energy and the nature of emissive states in organometal halide perovskites. The Journal of Physical Chemistry Letters. 6 (15), 2969-2975 (2015).
  46. Jurow, M. J., et al. Manipulating the Transition Dipole Moment of CsPbBr3 Perovskite Nanocrystals for Superior Optical Properties. Nano Letters. , (2019).
  47. Gao, Y., Weidman, M. C., Tisdale, W. A. CdSe Nanoplatelet Films with Controlled Orientation of their Transition Dipole Moment. Nano Letters. 17 (6), 3837-3843 (2017).
  48. Schuller, J. A., et al. Orientation of luminescent excitons in layered nanomaterials. Nature Nanotechnology. 8 (4), 271-276 (2013).
  49. Ha, S. K., Mauck, C. M., Tisdale, W. A. Towards Stable Deep-Blue Luminescent Colloidal Lead Halide Perovskite Nanoplatelets: Systematic Photostability Investigation. Chemistry of Materials. 31 (7), 2486-2496 (2019).
  50. Paritmongkol, W., Dahod, N., Mao, N., Zheng, S. L., Tisdale, W. Synthetic Variation and Structural Trends in Layered Two-Dimensional Alkylammonium Lead Halide Perovskites. ChemRxiv. , (2019).
  51. Stoumpos, C. C., et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials. 28 (8), 2852-2867 (2016).
  52. Akkerman, Q. A., et al. Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. Journal of the American Chemical Society. 138 (3), 1010-1016 (2016).
  53. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society. 131 (17), 6050-6051 (2009).
  54. Bischak, C. G., et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Letters. 17 (2), 1028-1033 (2017).
  55. Mauck, C. M., Tisdale, W. A. Excitons in 2D Organic–Inorganic Halide Perovskites. Trends in Chemistry. , (2019).
  56. Gong, X., et al. Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17 (6), 550-556 (2018).

Play Video

Cite This Article
Ha, S. K., Tisdale, W. A. Facile Synthesis of Colloidal Lead Halide Perovskite Nanoplatelets via Ligand-Assisted Reprecipitation. J. Vis. Exp. (152), e60114, doi:10.3791/60114 (2019).

View Video