Summary

Morphological and Functional Assessment of the Right Ventricle Using 3D Echocardiography

Published: October 28, 2020
doi:

Summary

Here, we provide a step-by-step acquisition and analysis protocol for the 3D volumetric assessment of the right ventricle, mainly focusing on the practical aspects that maximize the feasibility of this technique.

Abstract

Traditionally, it was believed that the right side of the heart has a minor role in circulation; however, more and more data suggest that right ventricular (RV) function has strong diagnostic and prognostic power in various cardiovascular disorders. Due to its complex morphology and function, assessment of the RV by conventional two-dimensional echocardiography is limited: the everyday clinical practice usually relies on simple linear dimensions and functional measures. Three-dimensional (3D) echocardiography overcame these limitations by providing volumetric quantification of the RV free of geometrical assumptions. Here, we offer a step-by-step guide to obtain and analyze 3D echocardiographic data of the RV using the leading commercially available software. We will quantify 3D RV volumes and ejection fraction. Several technical aspects may help to improve the quality of RV acquisition and analysis as well, which we present in a practical manner. We review the current opportunities and the limiting factors of this method and also highlight the potential applications of 3D RV assessment in current clinical practice.

Introduction

Echocardiography came a long way from its first clinical applications in the 1950s1. The first one-dimensional ultrasound probes were designed to provide simple linear diameters of the chamber walls and lumens; however, they undoubtedly represent a milestone in cardiovascular imaging. The development of two-dimensional (2D) ultrasound imaging was another major step by providing much more precise quantification of morphology and function and is still considered to be the standard method in everyday clinical practice. Nevertheless, 2D echocardiography-based assessment still carries a major limitation of the technique: imaging of a given chamber from a few tomographic planes does not adequately characterize the morphology and function of a three-dimensional (3D) structure. This problem is even more pronounced in the case of the right ventricle (RV): compared to the relatively simple bullet-shaped left ventricle (LV), the RV has a complex geometry2 that cannot be adequately quantified using linear diameters or areas3. Despite these widely known facts, RV morphology and function are usually measured by such simple parameters in the clinical practice.

For many decades, the RV was considered to have a much less important role in circulation compared to its left counterpart. Several landmark papers defeated this standpoint showing the strong prognostic role of RV geometry and function in a wide variety of diseases4,5,6,7. Numerous studies demonstrated the incremental value of RV measurement even by using relatively simple conventional parameters, which highlights the importance and need for more precise quantification of the chamber with potentially meaningful clinical value.

3D echocardiography overcomes several limitations of the 2D assessment of the cardiac chambers. While the measurement of volumes and also functional parameters free of geometrical assumptions may be of high interest in the case of the LV as well, it may gain particular importance in the assessment of the RV8. 3D-derived RV volumes and ejection fraction (EF) are shown to have significant prognostic value in various cardiovascular conditions9,10.

Nowadays, several vendors provide semi-automated solutions for 3D RV assessment with validated results against gold standard cardiac magnetic resonance (MR) measurements11,12. The technical requirements of 3D assessment are essential parts of a state-of-the-art cardiovascular imaging department nowadays, and it is expected that it will soon be part of the general equipment in every echocardiography lab. With proper expertise in 3D acquisition and post-processing, 3D RV analysis can be easily implemented into the standard examination protocol.

Protocol

The protocol follows the guidelines of the institution's human research ethics committee and the patients of the clinical cases gave their written informed consent to the study. 1. Technical requirements For 3D acquisition and analysis, use appropriate software and hardware. Use ECG cables of the echocardiography device; moreover, it is mandatory for the complete 3D acquisition protocol described below. For 3D acquisition, use a 3D echocardiographic probe and 3D-compa…

Representative Results

3D analysis of the RV is feasible in a wide variety of cardiovascular diseases. Case 1 is a healthy volunteer with normal ventricular volumes and function (Figure 1). Case 2 is a post-mitral valve repair patient who is a typical example for the conflicting results of conventional 2D assessment: while TAPSE is markedly reduced, the patient does not show any signs of RV dysfunction and a maintained RV global systolic function was confirmed by normal 3D RV EF (<…

Discussion

3D analysis of the RV represents an important step in everyday cardiology practice. In parallel with the growing interest of the morphology and function of the previously neglected cardiac chamber, these novel solutions provide clinically meaningful information about the right side of the heart. While 3D acquisition has several aspects that markedly differ from 2D echocardiographic imaging, by keeping special attention to the critical points and by using a thorough protocol, 3D RV analysis may progress from a scientific …

Acknowledgements

Project no. NVKP_16-1–2016-0017 (’National Heart Program’) has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the NVKP_16 funding scheme. The research was financed by the Thematic Excellence Programme (2020-4.1.1.-TKP2020) of the Ministry for Innovation and Technology in Hungary, within the framework of the Therapeutic Development and Bioimaging thematic programmes of the Semmelweis University.

Materials

3V-D/4V-D/4Vc-D General Electric n.a. ultrasound probe
4D Auto RVQ General Electric n.a. software for analysis
E9/E95 General Electric n.a. ultrasound machine
EchoPac v203 General Electric n.a. software for analysis

References

  1. Edler, I., Lindstrom, K. The history of echocardiography. Ultrasound in Medicine and Biology. 30 (12), 1565-1644 (2004).
  2. Ho, S. Y., Nihoyannopoulos, P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart. 92 (Suppl 1), i2-i13 (2006).
  3. Genovese, D., et al. Comparison Between Four-Chamber and Right Ventricular-Focused Views for the Quantitative Evaluation of Right Ventricular Size and Function. Journal of the American Society of Echocardiography. 32 (4), 484-494 (2019).
  4. Kovacs, A., Lakatos, B., Tokodi, M., Merkely, B. Right ventricular mechanical pattern in health and disease: beyond longitudinal shortening. Heart Failure Reviews. 24 (4), 511-520 (2019).
  5. Antoni, M. L., et al. Prognostic value of right ventricular function in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Circulation: Cardiovascular Imaging. 3 (3), 264-271 (2010).
  6. Amsallem, M., et al. Right Heart End-Systolic Remodeling Index Strongly Predicts Outcomes in Pulmonary Arterial Hypertension: Comparison With Validated Models. Circulation: Cardiovascular Imaging. 10 (6), (2017).
  7. Merlo, M., et al. The Prognostic Impact of the Evolution of RV Function in Idiopathic DCM. JACC: Cardiovascular Imaging. 9 (9), 1034-1042 (2016).
  8. Addetia, K., Muraru, D., Badano, L. P., Lang, R. M. New Directions in Right Ventricular Assessment Using 3-Dimensional Echocardiography. JAMA Cardiology. , (2019).
  9. Nagata, Y., et al. Prognostic Value of Right Ventricular Ejection Fraction Assessed by Transthoracic 3D Echocardiography. Circulation: Cardiovascular Imaging. 10 (2), (2017).
  10. Surkova, E., et al. Relative Prognostic Importance of Left and Right Ventricular Ejection Fraction in Patients With Cardiac Diseases. Journal of the American Society of Echocardiography. 32 (11), 1407-1415 (2019).
  11. Maffessanti, F., et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circulation: Cardiovascular Imaging. 6 (5), 700-710 (2013).
  12. . GE 4D RVQ White Paper Available from: https://www.imv-imaging.com/media/5879/4d_auto_rvq_whitepaper_v8.pdf (2017)
  13. Medvedofsky, D., et al. Novel Approach to Three-Dimensional Echocardiographic Quantification of Right Ventricular Volumes and Function from Focused Views. Journal of the American Society of Echocardiography. 28 (10), 1222-1231 (2015).
  14. Lakatos, B., et al. Quantification of the relative contribution of the different right ventricular wall motion components to right ventricular ejection fraction: the ReVISION method. Cardiovascular Ultrasound. 15 (1), 8 (2017).
  15. Lakatos, B. K., et al. Dominance of free wall radial motion in global right ventricular function of heart transplant recipients. Clinical Transplantation. 32 (3), e13192 (2018).
  16. Raina, A., Vaidya, A., Gertz, Z. M., Susan, C., Forfia, P. R. Marked changes in right ventricular contractile pattern after cardiothoracic surgery: implications for post-surgical assessment of right ventricular function. Journal of Heart and Lung Transplantation. 32 (8), 777-783 (2013).
  17. Nowak-Machen, M., et al. Regional Right Ventricular Volume and Function Analysis Using Intraoperative 3-Dimensional Echocardiography-Derived Mesh Models. Journal of Cardiothoracic and Vascular Anesthesia. 33 (6), 1527-1532 (2019).
  18. Pettersen, E., et al. Contraction pattern of the systemic right ventricle shift from longitudinal to circumferential shortening and absent global ventricular torsion. Journal of the American College of Cardiology. 49 (25), 2450-2456 (2007).
  19. Moceri, P., et al. Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension. European Heart Journal – Cardiovascular Imaging. , (2017).
  20. Addetia, K., et al. Three-dimensional echocardiography-based analysis of right ventricular shape in pulmonary arterial hypertension. European Heart Journal – Cardiovascular Imaging. 17 (5), 564-575 (2016).
  21. Addetia, K., et al. Morphologic Analysis of the Normal Right Ventricle Using Three-Dimensional Echocardiography-Derived Curvature Indices. Journal of the American Society of Echocardiography. 31 (5), 614-623 (2018).
  22. Lakatos, B. K., et al. Exercise-induced shift in right ventricular contraction pattern: novel marker of athlete’s heart?. American Journal of Physiology – Heart and Circulatory. , (2018).
  23. Corrado, D., et al. Arrhythmogenic right ventricular cardiomyopathy: evaluation of the current diagnostic criteria and differential diagnosis. European Heart Journal. , (2019).
  24. Luo, S., et al. Right ventricular outflow tract systolic function correlates with exercise capacity in patients with severe right ventricle dilatation after repair of tetralogy of Fallot. Interactive Cardiovascular and Thoracic Surgery. 24 (5), 755-761 (2017).
check_url/cn/61214?article_type=t

Play Video

Cite This Article
Lakatos, B. K., Tokodi, M., Kispál, E., Merkely, B., Kovács, A. Morphological and Functional Assessment of the Right Ventricle Using 3D Echocardiography. J. Vis. Exp. (164), e61214, doi:10.3791/61214 (2020).

View Video