Summary

磷酸钙诱导的小鼠腹主动脉瘤模型

Published: November 18, 2022
doi:

Summary

该协议描述了磷酸钙诱导的腹主动脉瘤(AAA)小鼠模型,以研究AAA的病理特征和分子机制。

Abstract

腹主动脉瘤 (AAA) 是一种危及生命的心血管疾病,在世界范围内发生,其特征是腹主动脉不可逆扩张。目前,使用了几种化学诱导的鼠AAA模型,每个模型都模拟AAA发病机制的不同方面。与血管紧张素II和弹性蛋白诱导的AAA模型相比,磷酸钙诱导的AAA模型是一种快速且具有成本效益的模型。将CaPO4 晶体应用于小鼠主动脉会导致弹性纤维降解,平滑肌细胞丢失,炎症和与主动脉扩张相关的钙沉积。本文介绍了CaPO4诱导的AAA模型的标准协议。该方案包括材料制备,将CaPO4手术应用于肾下腹主动脉的外膜,收获主动脉以可视化主动脉瘤以及小鼠的组织学分析。

Introduction

腹主动脉瘤 (AAA) 是一种致命的心血管疾病,其特征是腹主动脉永久性扩张,一旦破裂,死亡率很高。AAA 与衰老、吸烟、男性、高血压和高脂血症有关1。几种病理过程已被证明有助于AAA的形成,包括细胞外基质纤维蛋白水解,免疫细胞浸润和血管平滑肌细胞的丧失。目前,AAA的病理机制仍然难以捉摸,并且没有经过验证的药物治疗AAA1。由于人类主动脉样本很少,对人类AAA的研究受到限制;因此,已经建立并广泛采用几种化学修饰诱导的动物AAA模型,包括皮下血管紧张素II(AngII)输注,血管周围或腔内弹性蛋白酶孵育以及血管周围磷酸钙应用2。常用的小鼠模型是将磷酸钙(CaPO4)应用于肾下腹主动脉的外膜,具有成本效益且不需要基因修饰。

Gertz等人最初报道了将CaCl2直接应用于兔颈动脉以诱导动脉瘤变化,后来应用于小鼠的腹主动脉。该模型由Yamanouchi等人开发,通过在小鼠中使用CaPO 4晶体来加速主动脉扩张4。CaPO4浸润到小鼠主动脉中概括了在人类AAA中观察到的许多病理特征,包括深度巨噬细胞浸润,细胞外基质降解和钙沉积。人类AAA的危险因素,如高脂血症,也增加了CaPO4诱导的小鼠AAA5。与ApoE-/-或LDLR-/-小鼠中AngII灌注诱导的AAA相反,CaPO4诱导的AAA发生在肾下主动脉区域,其模拟人类AAA。目前,该方法已广泛应用于评估转基因小鼠对AAA发展的敏感性和评估药物67的抗AAA作用。

Protocol

动物研究按照北京大学医学部机构动物护理与使用委员会的指导方针进行,并得到北京大学生物医学伦理委员会(LA2015142)的批准。所有用于手术的小鼠均用异氟醚(1.5%-2%)麻醉,并仔细监测麻醉以避免小鼠疼痛或不适。 1. 准备 切下0.3厘米宽的无粉橡胶手套和纱布。 购买8-10周龄的C57BL / 6J雄性小鼠。将动物安置在空调环境中,进行12小时的明暗循…

Representative Results

施用CaPO4后14天,对C57BL/6J雄性小鼠实施安乐死,收获并清洁其主动脉。对主动脉的形态进行成像以可视化AAA形成。如图1A-B所示,CaPO4的应用导致肾下腹主动脉扩张。在组织学上,CaPO4导致弹性纤维的显着降解,如弹性蛋白断裂所示(图1C)。 <img alt="Figure 1" c…

Discussion

CaPO4的手术周围应用是在小鼠中诱导AAA的可靠方法。一些研究使用了CaPO4模型,并一致报告说这是一种快速且可重复的方法来研究小鼠AAA79。该模型被认为概括了人主动脉瘤的部分特征,并为AAA发病机制提供了机制见解,包括炎症和细胞外基质降解。

人类AAA的危险因素主要包括衰老、男性、吸烟、高脂血症、高?…

Acknowledgements

这项研究得到了中国国家自然科学基金(NSFC,81730010,91839302,81921001,31930056和91529203)和国家重点研发计划(2019YFA 0801600)的资助。

Materials

CaCl2 MECKLIN C805225
NaCl Biomed SH5001-01
PBS HARVEYBIO MB5051
Small animal ventilator RWD H1550501-012

References

  1. Kent, K. C. Abdominal aortic aneurysms. The New England Journal of Medicine. 371, 2101-2108 (2014).
  2. Patelis, N., et al. Animal models in the research of abdominal aortic aneurysms development. Physiological Research. 66 (6), 899-915 (2017).
  3. Gertz, S. D., Kurgan, A., Eisenberg, D. Aneurysm of the rabbit common carotid artery induced by periarterial application of calcium-chloride in vivo. Journal of Clinical Investigation. 81 (3), 649-656 (1988).
  4. Yamanouchi, D., et al. Accelerated aneurysmal dilation associated with apoptosis and inflammation in a newly developed calcium phosphate rodent abdominal aortic aneurysm model. Journal of Vascular Surgery. 56 (2), 455-461 (2012).
  5. Wang, Y. T., et al. Influence of apolipoprotein E, age and aortic site on calcium phosphate induced abdominal aortic aneurysm in mice. Atherosclerosis. 235 (1), 204-212 (2014).
  6. Zhao, G., et al. Unspliced xbp1 confers VSMC homeostasis and prevents aortic aneurysm formation via foxo4 interaction. Circulation Research. 121 (12), 1331-1345 (2017).
  7. Jia, Y., et al. Targeting macrophage TFEB-14-3-3 epsilon interface by naringenin inhibits abdominal aortic aneurysm. Cell Discovery. 8 (1), 21 (2022).
  8. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  9. Yu, B., et al. CYLD deubiquitinates nicotinamide adenine dinucleotide phosphate oxidase 4 contributing to adventitial remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology. 37 (8), 1698-1709 (2017).
  10. Altobelli, E., Rapacchietta, L., Profeta, V. F., Fagnano, R. Risk factors for abdominal aortic aneurysm in population-based studies: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health. 15 (12), 2805 (2018).
  11. Theivacumar, N. S., Stephenson, M. A., Mistry, H., Valenti, D. Diabetes mellitus and aortic aneurysm rupture: A favorable association. Vascular and Endovascular Surgery. 48 (1), 45-50 (2014).
  12. Tanaka, T., Takei, Y., Yamanouchi, D. Hyperglycemia suppresses calcium phosphate-induced aneurysm formation through inhibition of macrophage activation. Journal of the American Heart Association. 5 (3), 003062 (2016).
  13. Lu, H., et al. Subcutaneous angiotensin II infusion using osmotic pumps induces aortic aneurysms in mice. Journal of Visualized Experiments. (103), e53191 (2015).
  14. Urry, D. W. Neutral sites for calcium ion binding to elastin and collagen: A charge neutralization theory for calcification and its relationship to atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America. 68 (4), 810-814 (1971).
  15. Li, Z. Q., et al. Runx2 (runt-related transcription factor 2)-mediated microcalcification is a novel pathological characteristic and potential mediator of abdominal aortic aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology. 40 (5), 1352-1369 (2020).
  16. Kelly, M. J., Igari, K., Yamanouchi, D. Osteoclast-like cells in aneurysmal disease exhibit an enhanced proteolytic phenotype. International Journal of Molecular Sciences. 20 (19), 4689 (2019).
check_url/cn/64173?article_type=t

Play Video

Cite This Article
Zhang, S., Cai, Z., Zhang, X., Ma, T., Kong, W. A Calcium Phosphate-Induced Mouse Abdominal Aortic Aneurysm Model. J. Vis. Exp. (189), e64173, doi:10.3791/64173 (2022).

View Video