Summary

从胚胎小鼠大脑中建立混合神经元和神经胶质细胞培养物以研究感染和先天免疫

Published: June 30, 2023
doi:

Summary

该协议提供了一种从胚胎第17天小鼠大脑生成中枢神经系统细胞培养物的独特方法,用于神经(免疫)学研究。该模型可以使用各种实验技术进行分析,包括RT-qPCR,显微镜,ELISA和流式细胞术。

Abstract

中枢神经系统(CNS)的模型必须概括 体内发现 的相互连接的细胞的复杂网络。中枢神经系统主要由神经元、星形胶质细胞、少突胶质细胞和小胶质细胞组成。由于越来越多的努力替代和减少动物的使用,已经开发了各种 体外 细胞培养系统来探索先天细胞特性,从而可以开发针对CNS感染和病理的治疗方法。虽然某些研究问题可以通过基于人类的细胞培养系统来解决,例如(诱导的)多能干细胞,但与人类细胞一起工作在可用性、成本和伦理方面有其自身的局限性。在这里,我们描述了一种从胚胎小鼠大脑中分离和培养细胞的独特方案。由此产生的混合神经细胞培养物模拟 体内大脑中发现的几种细胞群和相互作用。与目前的等效方法相比,该协议更接近于模拟大脑的特征,并且还获得了更多的细胞,从而允许从一只怀孕的小鼠中研究更多的实验条件。此外,该协议相对容易且高度可重复。这些培养物已经过优化,可用于各种规模,包括基于 96 孔的高通量筛选、24 孔显微镜分析和用于流式细胞术和逆转录定量聚合酶链反应 (RT-qPCR) 分析的 6 孔培养物。这种培养方法是在CNS的一些复杂性背景下研究感染和免疫力的有力工具,并且体 方法很方便。

Introduction

提高我们对中枢神经系统(CNS)的理解对于改善许多神经炎症和神经退行性疾病的治疗选择至关重要。中枢神经系统是大脑、脊髓和视神经内相互连接的细胞的复杂网络,包括神经元、少突胶质细胞、星形胶质细胞及其先天免疫细胞小胶质细胞1体外 方法通常可以大大减少进行有意义研究所需的小鼠数量;然而,CNS的复杂性使得不可能使用细胞系概括 体内 情况。混合神经细胞培养物提供了一种非常有价值的研究工具,用于研究相关模型中的神经(免疫)学问题,符合替换、减少和改进(3Rs)原则23

Thomson等人描述了一种使用产前脊髓细胞分化为上述所有主要CNS细胞类型4的细胞培养方法。该系统还具有突触形成,髓鞘轴突和Ranvier节点。这种培养方法的主要局限性是,作为脊髓,它不能有效地模拟大脑,并且胚胎第13天(E13)脊髓的细胞产量正在收缩。因此,这限制了可以研究的实验条件的数量。因此,本研究旨在开发一种新的细胞培养系统,通过提高细胞产量来概括大脑的特征,以减少对动物的需求。

以Thomson等人为起点,我们开发了一种纯粹来自产前小鼠大脑的细胞培养模型。这些培养物具有与脊髓培养物相同的细胞群、互连性和治疗选择,只是相比之下髓鞘形成较少。然而,具有大约三倍细胞产量的CNS 体外 模型更有效,需要更少的小鼠和更少的胚胎处理时间。我们针对多种下游应用和规模优化了这种独特的培养系统,包括使用玻璃盖玻片进行显微镜分析,以及使用各种尺寸的塑料孔板,包括用于高通量研究的 96 孔板。

Protocol

所有动物实验均符合当地动物使用法律和准则,并得到格拉斯哥大学当地伦理审查委员会的批准。根据1986年英国动物科学程序法,在英国内政部项目许可证的主持下,动物被饲养在特定的无病原体条件下。在这项研究中,使用了内部繁殖的成年C57BL / 6J小鼠。由于怀孕成功率较高,建议使用年轻女性(8-12周);雄性可以重复使用进行多轮繁殖。 图1 表示所述生成混合神经元和…

Representative Results

显微术在玻璃盖玻片上生长的培养物非常适合通过显微镜进行分析。为了可视化培养物的发展,将盖玻片固定在从DIV0(一旦细胞附着)到DIV28的多个时间点的4%多聚甲醛(PFA)中。如前 所述5使用三种不同的染色组合对培养物进行免疫荧光成像染色:NG2(未成熟的少突胶质细胞)和巢蛋白(神经元干/祖细胞)作为发育标志物,SMI31(轴突),MBP(髓磷脂)和NeuN(?…

Discussion

中枢神经系统是一个复杂的网络,从大脑到脊髓,由许多细胞类型组成,主要是神经元、少突胶质细胞、星形胶质细胞和小胶质细胞1。由于每个细胞在维持体内平衡和对CNS91011中的挑战产生适当的反应方面都起着重要作用因此包含所有这些细胞类型的培养系统是研究大脑如何对刺激做出反应的有用且通用的工?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢Edgar和Linington实验室的成员,特别是Chris Linington教授,Diana Arseni博士和Katja Muecklisch博士,感谢他们的建议,有用的评论,以及在我们建立这些文化时为文化提供营养的帮助。特别感谢Muecklisch博士为Cell Profiler管道提供了起点。这项工作得到了MS协会(赠款122)和尤里和洛娜·切尔纳约夫斯基基金会的支持;格拉斯哥大学资助JC和MP;以及惠康信托基金会(217093/Z/19/Z)和医学研究委员会(MRV0109721)给GJG。

Materials

10x Trypsin Sigma T4549-100ML To digest tissue
140 mm TC Dish Fisher 11339283 Put 8 35 mm dishes per 1 140 mm dish
15 mL Falcon Sarstedt 62554502 To collect cells into pellet for resuspension in plating media
18 G needle Henke Sass Wolf 4710012040 For trituration of sample
21 G needle BD 304432 For trituration of sample
23 G needle Henke Sass Wolf 4710006030 For trituration of sample
35 mm TC Dish Corning 430165 Plate out 3 PLL coated coverslips per 1 35 mm dish
5 mL syringe Fisher 15869152 For trituration of sample
6 well plate Corning 3516 To plate out cells for RT-qPCR, and flow cytometry
7 mL Bijoux Fisher DIS080010R To put brains intp
96 well plate Corning 3596 To plate out cells for high-throughput testing
ACSA-2 Antibody, anti-mouse, PE Miltenyi 130-123-284 For flow cytometry staining of astrocytes
Angled forceps Dumont 0108-5/45-PO For dissection
Biotin Sigma B4501 For DM+/-
Boric Acid Sigma B6768-500G For boric acid buffer
Brilliant Violet 421 anti-mouse CD24 Antibody, clone M1-69 Biolegend 101825 For flow cytometry staining of neurons and astrocytes
Brilliant Violet 605 anti-mouse CD45 Antibody, clone 30-F11 Biolegend 103139 For flow cytometry staining of microglia
Brilliant Violet 785 anti-mouse/human CD11b Antibody, clone M1/70 Biolegend 101243 For flow cytometry staining of microglia
BSA Fraction V Sigma A3059-10G For SD Inhibitor
CNP Abcam AB6319 Mature oligodendrocytes
Coverslip VWR 631-0149 To plate out cells for microscopy
Dissection Scissors Sigma S3146-1EA For dissection
DMEM High glucose, sodium pyruvate, L-Glutamine Gibco 21969-035 For DM+/-, and for plating media
DNase I Thermofisher 18047019 For SD Inhibitor, can use this or the other Dnase from sigma
DNase I Sigma D4263 For SD Inhibitor, can use this or the other Dnase from thermofisher
eBioscience Fixable Viability Dye eFluor 780 Thermofisher 65-0865-14 Live / Dead stain
Fine forceps Dumont 0102-SS135-PO For dissection
GFAP Invitrogen 13-0300 Astrocytes
HBSS w Ca Mg Sigma H9269-500ML For plating media
HBSS w/o Ca Mg Sigma H9394-500ML For brains to be added to
Horse Serum Gibco 26050-070 For plating media
Hydrocortisone Sigma H0396 For DM+/-
Iba1 Alpha-Laboratories 019-1971 Microglia
Insulin Sigma I1882 For DM+
Leibovitz L-15 GIbco 11415-049 For SD Inhibitor
MBP Bio-Rad MCA409S Myelin
Mouse CCL5/RANTES DuoSet ELISA Kit BioTechne DY478-05 ELISA kit for quantifying concentration of CCL5 in supernatants of 96 well plate
N1 media supplement Sigma N6530-5ML For DM+/-
Nestin Merck MAB353 Neuronal stem/progenitor cells
NeuN Thermofisher PA578499 Neuronal cell body
NG2 Sigma AB5320 Immature oligodendrocytes
O4 Antibody, anti-human/mouse/rat, APC Miltenyi 130-119-155 For flow cytometry staining of oligodendrocytes
Pen/Strep Sigma P0781-100ML For DM+/-, and for plating media
Poly-L-Lysinehydrobromide Sigma P1274 For Boric acid / poly-L-lysine solution to coat coverslips
SMI31 BioLegend 801601 Axons
Sodium Tetraborate Sigma 221732-100G For boric acid buffer
Trizol Thermofisher 15596026 For lysing cells for RT-qPCR
Trypsin inhibitor from soybean Sigma T9003-100MG For SD Inhibitor

References

  1. Kovacs, G. G. Cellular reactions of the central nervous system. Handbook of Clinical Neurology. 145, 13-23 (2018).
  2. Russell, W. M. S., Burch, R. L. . The Principles of Humane Experimental Techniques. 1, (1959).
  3. Hubrecht, R. C., Carter, E. The 3Rs and humane experimental technique: Implementing change. Animals. 9 (10), 754 (2019).
  4. Thomson, C. E., et al. synapsing cultures of murine spinal cord-validation as an in vitro model of the central nervous system. The European Journal of Neuroscience. 28 (8), 1518-1535 (2008).
  5. Bijland, S., et al. An in vitro model for studying CNS white matter: Functional properties and experimental approaches. F1000Research. 8, 117 (2019).
  6. Fragkoudis, R., et al. Neurons and oligodendrocytes in the mouse brain differ in their ability to replicate Semliki Forest virus. Journal of Neurovirology. 15 (1), 57-70 (2009).
  7. Hayden, L., et al. Lipid-specific IgMs induce antiviral responses in the CNS: Implications for progressive multifocal leukoencephalopathy in multiple sclerosis. Acta Neuropathologica Communications. 8 (1), 135 (2020).
  8. Kantzer, C. G., et al. Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia. 65 (6), 990-1004 (2017).
  9. Yin, J., Valin, K. L., Dixon, M. L., Leavenworth, J. W. The role of microglia and macrophages in CNS homeostasis, autoimmunity, and cancer. Journal of Immunology Research. 2017, (2017).
  10. Gee, J. R., Keller, J. N. Astrocytes: Regulation of brain homeostasis via apolipoprotein E. The International Journal of Biochemistry and Cell Biology. 37 (6), 1145-1150 (2005).
  11. Madeira, M. M., Hage, Z., Tsirka, S. E. Beyond myelination: possible roles of the immune proteasome in oligodendroglial homeostasis and dysfunction. Frontiers in Neuroscience. 16, 867357 (2022).
  12. Keller, D., Erö, C., Markram, H. Cell densities in the mouse brain: A systematic review. Frontiers in Neuroanatomy. 12, 83 (2018).
  13. Wang, Y. X., et al. Oxygenglucose deprivation enhancement of cell death/apoptosis in PC12 cells and hippocampal neurons correlates with changes in neuronal excitatory amino acid neurotransmitter signaling and potassium currents. Neuroreport. 27 (8), 617-626 (2016).
  14. Rock, K. L., Kono, H. The inflammatory response to cell death. Annual Review of Pathology: Mechanisms of Disease. 3, 99-126 (2008).
  15. Chen, V. S., et al. Histology atlas of the developing prenatal and postnatal mouse central nervous system, with emphasis on prenatal days E7.5 to E18.5. Toxicologic Pathology. 45 (6), 705-744 (2017).
  16. Gordon, J., Amini, S., White, M. K. General overview of neuronal cell culture. Methods in Molecular Biology. 1078, 1-8 (2013).
  17. Kesselheim, A. S., Hwang, T. J., Franklin, J. M. Two decades of new drug development for central nervous system disorders. Nature Reviews Drug Discovery. 14 (12), 815-816 (2015).
  18. Gribkoff, V. K., Kaczmarek, L. K. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology. 120, 11-19 (2017).
  19. Zamanian, J. L., et al. Genomic analysis of reactive astrogliosis. Journal of Neuroscience. 32 (18), 6391-6410 (2012).
  20. Nishiyama, A., Suzuki, R., Zhu, X. NG2 cells (polydendrocytes) in brain physiology and repair. Frontiers in Neuroscience. 8, 133 (2014).
  21. Lee, C. T., Bendriem, R. M., Wu, W. W., Shen, R. F. 3D brain organoids derived from pluripotent stem cells: Promising experimental models for brain development and neurodegenerative disorders. Journal of Biomedical Science. 24 (1), 59 (2017).
  22. Asch, B. B., Medina, D., Brinkley, B. R. Microtubules and actin-containing filaments of normal, preneoplastic, and neoplastic mouse mammary epithelial cells. 癌症研究. 39 (3), 893-907 (1979).
  23. Koch, K. S., Leffertt, H. L. Growth control of differentiated adult rat hepatocytes in primary culture. Annals of the New York Academy of Sciences. 349, 111-127 (1980).
  24. Nevalainen, T., Autio, A., Hurme, M. Composition of the infiltrating immune cells in the brain of healthy individuals: effect of aging. Immunity and Ageing. 19 (1), 45 (2022).
  25. Daneman, R., Prat, A. The blood-brain barrier. Cold Spring Harbor Perspectives in Biology. 7 (1), 020412 (2015).

Play Video

Cite This Article
Gamble, A., Suessmilch, M., Bonestroo, A., Merits, A., Graham, G. J., Cavanagh, J., Edgar, J. M., Pingen, M. Establishing Mixed Neuronal and Glial Cell Cultures from Embryonic Mouse Brains to Study Infection and Innate Immunity. J. Vis. Exp. (196), e65331, doi:10.3791/65331 (2023).

View Video