Summary

RNA Interference in the Egg Parasitoid, Trichogramma dendrolimi Matsumura

Published: November 21, 2023
doi:

Summary

The manipulation of RNA interference (RNAi) presents a formidable challenge in many parasitoid species with diminutive size, such as Trichogramma wasps. This study delineated an efficient RNAi method in Trichogramma denrolimi. The present methodology provides a robust model for investigating gene regulation in Trichogramma wasps.

Abstract

The egg parasitoids, Trichogramma spp, are recognized as efficient biological control agents against various lepidopteran pests in agriculture and forests. The immature stages of Trichogramma offspring develop within the host egg, exhibiting remarkable diminutiveness (approximately 0.5 mm in adult length). RNA-interference (RNAi) methodology has emerged as a crucial tool for elucidating gene functions in numerous organisms. However, manipulating RNAi in certain small parasitoid species, such as Trichogramma, has generally posed significant challenges. In this study, we present an efficient RNAi method in Trichogramma denrolimi. The outlined procedure encompasses the acquisition and isolation of individual T. dendrolimi specimens from host eggs, the design and synthesis of double-stranded RNA (dsRNA), the in vitro transplantation and cultivation of T. dendrolimi pupae, the micro-injection of dsRNA, and the subsequent assessment of target gene knockdown through RT-qPCR analysis. This study furnishes a comprehensive, visually detailed procedure for conducting RNAi experiments in T. dendrolimi, thereby enabling researchers to investigate the gene regulation in this species. Furthermore, this methodology is adaptable for RNAi studies or micro-injections in other Trichogramma species with minor adjustments, rendering it a valuable reference for conducting RNAi experiments in other endoparasitic species.

Introduction

Trichogramma spp. are a group of egg parasitoids that have been extensively utilized as highly efficient biological control agents against a wide spectrum of lepidopteran pests in agricultural and forest ecosystems worldwide1,2,3,4. The application of mass-reared Trichogramma provides an environmentally friendly approach for the sustainable management of pests5,6,7. Understanding the molecular biology of Trichogramma wasps provides valuable insights into enhancing the mass-rearing efficiency and field performance of these biological control agents8,9by investigating the methodology of gene regulation and genome editing10.

Since the discovery of double-stranded RNA (dsRNA)-mediated specific genetic interference in Caenorhabditis elegans in 1998, the RNA-interference (RNAi) method has evolved into a vital genetic toolkit for exploring the regulatory mechanisms of organisms by suppressing the expression of target genes11. RNAi experiments have become a standard methodology widely applied to study gene function in numerous insect species12,13. Nevertheless, the manipulation of RNAi presents a formidable challenge in many parasitoid species, particularly among those belonging to the endoparasitic Chalcidoidea family14,15,16. The RNAi method has been documented in at least 13 parasitoid species14,15,16,17,18,19. Among these, the RNAi approach has been comprehensively conducted in Nasonia wasps and is applicable throughout the developmental stages, including embryos, larvae, pupae, and adults14,15,16. It is noteworthy that Nasonia wasps are ectoparasitoids, with their offspring developing in the interstitial space between the host pupa and the puparium, enabling their cultivation in vitro and making them tolerate certain treatments, such as micro-injection. Unlike Nasonia wasps, Trichogramma individuals undergo their entire embryonic, larval, and pupal development inner the host egg. The layer at embryo and larva stages (which may impede dsRNA permeability), vulnerability to damage, and the difficulty in surviving in vitro present formidable obstacles20,21,22. Additionally, the diminutive size of Trichogramma individuals, approximately ~0.5 mm in adult or pupal length, renders them exceedingly intricate to manipulate20,21,22.

In the present study, we outline a comprehensive procedure for conducting RNA interference (RNAi) experiments in Trichogramma denrolimi Matsumura. This procedure encompasses the following procedures: (1) the design and synthesis of double-stranded RNA (dsRNA), (2) microinjection of T. denrolimi pupae, (3) the transplantation and in vitro incubation of these pupae, and (4) the detection of target gene knockdown through RT-qPCR analysis. The target gene selected for the RNAi experiment is the ferritin heavy chain homology (Ferhch). FerHCH, an iron-binding protein, contains a ferroxidase center endowed with antioxidant capabilities, facilitating the oxidation of Fe2+ to Fe3+. It plays an indispensable role in the growth and development of various organisms by maintaining redox equilibrium and iron homeostasis. Depletion of FerHCH can result in the overaccumulation of iron, leading to irreversible tissue damage, and often culminating in significant phenotypic alterations, including growth defects, deformities, and mortality23,24. This study offers a step-by-step guide for conducting RNAi in T. denrolimi, which will be invaluable for investigating the gene functions within the broader context of Trichogramma wasps.

Protocol

NOTE: See the Table of Materials for details related to all materials, instruments, software, and reagents used in this protocol. 1. Collection and maintenance of insect culture Adhere a group of ~5,000 eggs of Corcyra cephalonica (Stainton) onto a 9 cm by 16 cm card using a 1:5 (v/v) solution of gum arabic powder and water25,26. NOTE: Avoid attaching too many host eggs to t…

Representative Results

The emergence rate of T. denrolimi pupae injected with dsFerhch was significantly lower than that of those injected with dsGFP or those without injection (Table 1). Among the emerged wasps, 51.85% of T. denrolimi wasps subjected to dsFerhch developed deformed small wings. The deformed wasps were not observed in the wasps injected with dsGFP or without any injection (Table 1). Moreover, the abdomens of T. denrolimi pupae injec…

Discussion

Trichogramma wasps are recognized as effective biological control agents, specifically targeting a range of lepidopteran pests in agriculture and forestry1. These diminutive wasps undergo their immature stages within the host egg, a characteristic that presents challenges in conducting RNAi experiments5,18. This study offers a comprehensive visual guide for conducting RNAi experiments in T. denrolimi. Given the shared bio…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was funded by the Projects of the National Natural Science Foundation of China (32172476, 32102275), the Agricultural Science and Technology Innovation Program (CAAS-ZDRW202203, CAAS-ZDRW202108), and Central Funds Guiding the Local Science and Technology Development (XZ202301YD0042C).

Materials

2x ES Taq MasterMix (Dye) Cowin Biotech, China CW0690H To amplify the dsRNA sequences
20x PBS Buffer, DEPC treated (7.2-7.6) Sangon Biotech, China B540627-0500 To dilute dsRNA
Agar strip Shishi Globe Agar Industries Co.,Ltd, China n/a To make culture medium
Ampicillin sodium Sangon Biotech, China A610028 To make culture medium
Bioer Constant temperature metal bath  BIOER, China MB-102 To synthesis dsRNA
Borosilicate glass capillary  WPI, USA 1B100-4 To pull capillary glass needle
Clean bench  Airtech, China SW-CJ-1FD To extract RNA
Double distilled water Sangon Biotech, China A500197-0500 To dilute cDNA
Environmental Testing chamber  Panasonic, Japan MLR-352H-PC To culture T. denrolimi
Eppendorf Centrifuge  Eppendrof, Germany 5418R To store RNA content
Eppendorf FemtoJet 4i Eppendrof, Germany FemtoJet 4i To inject T. denrolimi
Eppendorf Refrigerated Centrifuge  Eppendrof, Germany 5810R Centrifuge
Ethanol solution (75%, RNase-free) Aladdin, China M052131-500ml To extract RNA
Gel Extraction Kit Omega, USA D25000-02 To extract cDNA
GUM Arabic Solarbio, China CG5991-500g To make egg card
Isopropyl alchohol Aladdin, China 80109218 To extract RNA
Laser-Based Micropipette Puller  SUTTER, USA P-2000 To pull capillary glass needle
Microloader  Eppendrof, Germany 20 µL To load dsRNA
Multi-sample tissue grinder  LICHEN, China LC-TG-24 To grind T. denrolimi
Needle Grinder  SUTTER, USA BV-10-E To grind capillary glass needle
Nuclease-Free Water Sangon Biotech, China To dilute RNA
OLYMPUS Microscope OLYMPUS, Japan XZX16 To observe T. denrolimi
PCR machine  Bio-rad, USA S-1000 For DNA amplification
PowerPac Basic Bio-rad, USA PowerPacTM Basic To detect the quality of dsRNA 
Primer of dsGFP (Forward) [TAATACGACTCACTATAGGG]
ACAAACCAAGGCAAGTAATA
Primer of dsGFP (Reverse) [TAATACGACTCACTATAGGG]
CAGAGGCATCTTCAACG
Primer of Ferhch for qPCR (Forward) TGAAGAGATTCTGCGTTCTGCT
Primer of Ferhch for qPCR (Reverse) CTGTAGGAACATCAGCAGGCTT
Primer of Ferhch for RNAi (Reverse) [TAATACGACTCACTATAGGG]AG
TAGCCATCATCTTTCC
Primer of Ferhch for RNAi(Forward) [TAATACGACTCACTATAGGG]
ACACTGTCAATCGTCCTG
Primer of FoxO for qPCR (Forward) CTACGCCGATCTCATAACGC
Primer of FoxO for qPCR (Reverse) TGCTGTCGCCCTTGTCCT
PrimeScript RT reagent Kit with gDNA Eraser (Perfect Real Time) TaKaRa, Japan RR047A
Quantitative Real-time PCR  Bio-rad, USA CFX 96 Touch To perform reverse transcriptase polymerase chain reaction (RT-PCR) 
Real-time PCR (TaqMan) Primer and Probes Design Tool https://www.genscript.com/tools/real-time-pcr-taqman-primer-design-tool/
T7 RiBoMAX Express RNAi System Promega, USA P1700 To synthesis dsRNA  in vitro 
TB Green Premix Ex TaqTM Equation 1 (Til RnaseH Plus) TaKaRa, Japan RR820A To perform RT-qPCR
Trichloromethane KESHI, China GB/T682-2002 To extract RNA
TRIzol Reagent Ambion, USA 15596018 To extract total RNA content from samples
Ultra-low Temperature Freezer  Thermo, USA Forma 911

References

  1. Zang, L. S., Wang, S., Zhang, F., Desneux, N. Biological control with Trichogramma in China: History, present status and perspectives. Annu Rev Entomol. 66, 463-484 (2020).
  2. Zhou, J. C., et al. Optimal clutch size for quality control of bisexual and Wolbachia-infected thelytokous lines of Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) mass reared on eggs of a substitutive host, Antheraea pernyi Guérin-Méneville (Lepidoptera: Saturniidae). Pest Manag Sci. 76 (8), 2635-2644 (2020).
  3. Li, T. H., et al. Current status of the biological control of the fall armyworm Spodoptera frugiperda by egg parasitoids. J Pest Sci. 96, 1345-1363 (2023).
  4. Zhou, J. C., et al. Effects of temperature and superparasitism on quality and characteristics of thelytokous Wolbachia-infected Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) during mass rearing. Sci Rep. 9 (1), 18114 (2019).
  5. Zhou, J. C., et al. Penetrance during Wolbachia-mediated parthenogenesis of Trichogramma wasps is reduced by continuous oviposition, associated with exhaustion of Wolbachia titers in ovary and offspring eggs. Pest Manag Sci. 78 (7), 3080-3089 (2022).
  6. Huang, N. X., et al. Long-term and large-scale releases of Trichogramma promote pesticide decrease in maize in northeastern China. Entomol Gen. 40 (4), 331-335 (2020).
  7. Wang, P., et al. Performance of Trichogramma japonicum as a vector of Beauveria bassiana for parasitizing eggs of rice striped stem borer, Chilo suppressalis. Entomol Gen. 41 (2), 147-155 (2021).
  8. Ning, S. F., et al. The identification and expression pattern of the sex determination genes and their sex-specific variants in the egg parasitoid Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae). Front Physiol. 14, 1243753 (2023).
  9. Huo, L. X., et al. Selection and evaluation of RT-qPCR reference genes for expression analysis in the tiny egg parasitoid wasp, Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae). J Asia Pac Entomol. 25 (2), 101883 (2022).
  10. Leung, K., et al. Next-generation biological control: the need for integrating genetics and genomics. Biol Rev Camb Philos Soc. 95 (6), 1838-1854 (2020).
  11. Fire, A., et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391 (6669), 806-811 (1998).
  12. Leonard, S. P., et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science. 367 (6477), 573-576 (2020).
  13. Sun, Y., et al. Silencing an essential gene involved in infestation and digestion in grain aphid through plant-mediated RNA interference generates aphid-resistant wheat plants. Plant Biotechnol J. 17 (5), 852-854 (2019).
  14. Li, M., Bui, M., Akbari, O. S. Embryo Microinjection and Transplantation Technique for Nasonia vitripennis Genome Manipulation. J Vis Exp. 130, e56990 (2017).
  15. Dalla Benetta, E., Chaverra-Rodriguez, D., Rasgon, J. L., Akbari, O. S. Pupal and Adult Injections for RNAi and CRISPR Gene Editing in Nasonia vitripennis. J Vis Exp. 166, e61892 (2020).
  16. Lynch, J. A., Desplan, C. A method for parental RNA interference in the wasp Nasonia vitripennis. Nat Protoc. 1 (1), 486-494 (2006).
  17. Zhu, K. Y., Palli, S. R. Mechanisms, Applications, and Challenges of Insect RNA Interference. Annu Rev Entomol. 65, 293-311 (2020).
  18. Colinet, D., et al. Development of RNAi in a Drosophila endoparasitoid wasp and demonstration of its efficiency in impairing venom protein production. J Insect Physiol. 63, 56-61 (2014).
  19. Wang, B., et al. A digestive tract expressing α-amylase influences the adult lifespan of Pteromalus puparum revealed through RNAi and rescue analyses. Pest Manag Sci. 75 (12), 3346-3355 (2019).
  20. Zhou, J. C., et al. Wolbachia-infected Trichogramma dendrolimi is outcompeted by its uninfected counterpart in superparasitism but does not have developmental delay. Pest Manag Sci. 79 (3), 1005-1017 (2023).
  21. Zhou, J. C., et al. Posterior concentration of Wolbachia during the early embryogenesis of the host dynamically shapes the tissue tropism of Wolbachia in host Trichogramma wasps. Front Cell Infect Microbiol. 13, 1198428 (2023).
  22. Lee, T. Y. The development of Trichogramma evanescens Westw. and its influence on the embryonic development of its host, Attacus cynthia ricini Boisd. Acta Entomol Sin Z. 11 (1), 89-119 (1961).
  23. Shen, Y., Chen, Y. Z., Zhang, C. X. RNAi-mediated silencing of genes in the brown planthopper Nilaparvata lugens affects survival, growth and female fecundity. Pest Manag Sci. 77 (1), 365-377 (2021).
  24. Wu, S., Yin, S., Zhou, B. Molecular physiology of iron trafficking in Drosophila melanogaster. Curr Res Insect Sci. 50, 100888 (2022).
  25. Zhou, J. C., et al. Wolbachia-Driven Memory Loss in a Parasitic Wasp Increases Superparasitism to Enhance Horizontal Transmission. mBio. 13 (6), e0236222 (2022).
  26. Ning, S. F., Zhou, J. C., Liu, Q. Q., Zhao, Q., Dong, H. Gradual, temperature-induced change of secondary sexual characteristics in Trichogramma pretiosum infected with parthenogenesis-inducing Wolbachia. PeerJ. 7, e7567 (2019).
  27. Zhang, C., et al. Decreased Wolbachia titers cause gradual change in masculinization of intersex individuals of thelytokous Trichogramma dendrolimi. Entomol Gen. 42 (5), 751-759 (2022).
  28. Zhang, X., et al. Multi-parasitism: A promising approach to simultaneously produce Trichogramma chilonis and T. dendrolimi on eggs of Antheraea pernyi. Entomol Gen. 41 (6), 627-636 (2021).
  29. Zhou, J. C., et al. Effects of Thelytokous parthenogenesis-inducing Wolbachia on the fitness of Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) in superparasitised and single-parasitised hosts. Front Ecol Evol. 9, 730664 (2021).
  30. Flanders, S. E. Notes on the life history and anatomy of Trichogramma. Ann Entomol Soc Am. 30 (2), 304-308 (1937).
check_url/cn/66250?article_type=t

Play Video

Cite This Article
Zhang, L., Dong, Q., Yang, S., Che, W., Zhang, L., Zhou, J., Dong, H. RNA Interference in the Egg Parasitoid, Trichogramma dendrolimi Matsumura. J. Vis. Exp. (201), e66250, doi:10.3791/66250 (2023).

View Video