Summary

Two-Photon-Based Photoactivation in Live Zebrafish Embryos

Published: December 24, 2010
doi:

Summary

Multiphoton microscopy allows control of low energy photons with deep optical penetration and reduced phototoxicity. We describe the use of this technology for live cell labeling in zebrafish embryos. This protocol can be readily adapted for photo-induction of various light-responsive molecules.

Abstract

Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a perfect model organism for controlling the activity of a variety of chemical agents and proteins by focused light. Here we describe the use of two-photon microscopy to induce the activation of chemically caged fluorescein, which in turn allows us to follow cell’s destiny in live zebrafish embryos. We use embryos expressing a live genetic landmark (GFP) to locate and precisely target any cells of interest. This procedure can be similarly used for precise light induced activation of proteins, hormones, small molecules and other caged compounds.

Protocol

We describe a protocol of cell labeling using caged fluorescein, however, other photo-activatable dyes and proteins can be similarly used. 1. Injection of Caged Fluorescein Prepare 5% stock solution (5mg caged-fluorescein / 100 μL 0.2M KCl) of Dextran-conjugated 4,5-dimethoxy-2-nitrobenzyl (DMNB) caged fluorescein (10,000 MW dextran, anionic, Invitrogen, molecular probes, Carlsbad, CA, cat. no. D-3310). Aliquot and store in -20°C. Note that DMNB-caged fluorescein is sensi…

Discussion

Photo-activatable compounds are molecules whose function is masked until they are illuminated with a specific wavelength (usually UV), inducing a photochemical reaction that converts the molecules into a biologically or chemically active state. These probes provide very powerful tools in cell biology research, since the activation can be precisely controlled temporally and spatially by limiting their exposure to light.

The significant advantage of multi-photon microscopy is its relatively d…

Acknowledgements

Thanks are due to Genia Brodsky for figure graphics; Vyacheslav Kalchenko, Douglas Lutz, and Leonid Roitman for technical advice and assistance with the two-photon uncaging; Maayan Tahor and Suliman Elsadin for technical assistance; Uwe Strahle for kindly providing the neurogenin1 reporter line and Amos Gutnick for comments on this manuscript. The research in the Levkowitz lab is supported by the German-Israeli Foundation (grant number 183/2007); Israel Science Foundation (grant number 928/08) and the Harriet&Marcel Dekker Foundation. G.L. is an incumbent of the Tauro Career Development Chair in Biomedical Research.

Materials

Material Name Typ Company Catalogue Number Comment
Dextran-conjugated 4,5-dimethoxy-2-nitrobenzyl (DMNB) caged fluorescein (10,000 MW dextran, anionic)   Invitrogen D-3310 molecular probes
Agarose for injection trough and coated plates   Sigma A9539  
Thin Wall Glass Capillaries with filament   World Precision Instruments TW100F-6  
Micropipette puller   Sutter Instrument P-97  
Microloader tip   Eppendorf 5242 956.003  
Pneumatic picopump   World Precision Instruments PV820  
Phenylthiourea (PTU)   Sigma 22290-9  
Low melting point agarose for embryo mounting   Ultra Pure LMP agarose 16520100  
Anti-Fluorescein- alkaline phosphatase (AP) Fab fragments   Roche 11426338910  
Fast Red   Roche 11496549001  

Referenzen

  1. Westerfield, M. The Zebrafish Book: Guide for the Laboratory Use of Zebrafish (Brachydanio rerio. , (1995).
  2. Russek-Blum, N., Nabel-Rosen, H., Levkowitz, G. High resolution fate map of the zebrafish diencephalon. Dev Dyn. 238, 1827-1835 (2009).
  3. Russek-Blum, N. Dopaminergic neuronal cluster size is determined during early forebrain patterning. Development. 135, 3401-3413 (2008).
  4. Kozlowski, D. J., Murakami, T., Ho, R. K., Weinberg, E. S. Regional cell movement and tissue patterning in the zebrafish embryo revealed by fate mapping with caged fluorescein. Biochem Cell Biol. 75, 551-562 (1997).
  5. Staudt, N., Houart, C. The Prethalamus Is Established during Gastrulation and Influences Diencephalic Regionalization. PLoS Biol. 5, e69-e69 (2007).
  6. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A. 99, 12651-12656 (2002).
  7. Hatta, K., Tsujii, H., Omura, T. Cell tracking using a photoconvertible fluorescent protein. Nat Protoc. 1, 960-967 (2006).
  8. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale genetically targeted optical control of neural activity. Nat Neurosci. 8, 1263-1268 (2005).
  9. Bulina, M. E. Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nat Protoc. 1, 947-9453 (2006).
  10. Adams, S. R., Tsien, R. Y. Controlling cell chemistry with caged compounds. Annu Rev Physiol. 55, 755-784 (1993).
  11. Wieboldt, R. Photolabile precursors of glutamate: synthesis, photochemical properties, and activation of glutamate receptors on a microsecond time scale. Proc Natl Acad Sci U S A. 91, 8752-8756 (1994).
  12. Marque, J. J. Using caged neurotransmitters. Nature. 337, 583-584 (1989).
  13. Zucker, R. Photorelease techniques for raising or lowering intracellular Ca2. Methods Cell Biol. 40, 31-63 (1994).
  14. Neveu, P. A caged retinoic acid for one- and two-photon excitation in zebrafish embryos. Angew Chem Int Ed Engl. 47, 3744-3746 (2008).
  15. Shestopalov, I. A., Sinha, S., Chen, J. K. Light-controlled gene silencing in zebrafish embryos. Nat Chem Biol. 3, 650-651 (2007).
  16. Ando, H., Furuta, T., Tsien, R. Y., Okamoto, H. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat Genet. 28, 317-325 (2001).
check_url/de/1902?article_type=t

Play Video

Diesen Artikel zitieren
Russek-Blum, N., Nabel-Rosen, H., Levkowitz, G. Two-Photon-Based Photoactivation in Live Zebrafish Embryos. J. Vis. Exp. (46), e1902, doi:10.3791/1902 (2010).

View Video