Summary

交付的治疗药物通过侧脑室(ICV)和静脉(IV)注射液在小鼠

Published: October 03, 2011
doi:

Summary

本文演示了两种非常不同的方法:注射入脑(脑室)和2)全身(静脉注射)1)引入到中央的新生小鼠的中枢神经系统治疗药物。

Abstract

尽管血脑屏障的保护作用,起着屏蔽大脑,中枢神经系统(CNS)的访问限制, 设计 1,2神经退行性疾病的潜在疗法的失败中最常见的结果。神经退行性疾病,如脊髓性肌萎缩症(SMA),下运动神经元受到影响,可以极大地受益,从引进治疗药物进入中枢神经系统。此视频的目的是为了演示两种不同的注射范式传递到新生小鼠出生后不久,治疗材料。其中一个方法是直接注射入脑侧脑室(侧脑室)材料传递到中枢神经系统通过脑脊液3,4结果。第二种方法是一个时间的静脉注射(静脉注射),可以引入不同的循环系统的疗法,导致全身交付,包括中枢神经系统5。如果一个合适的病毒载体和病毒血清型是利用广泛的中枢神经系统传导是可以实现的的。颞静脉注射的可视化和利用是可行的出生后第6天。但是,如果传递的材料是为了达到中枢神经系统,这些注射应采取血脑屏障,同时由于其不成熟的状态,更渗透,最好到产后第2天之前。充分发展的血脑屏障,极大地限制了静脉交付的成效。一次手术aptitude是实现两个输送系统是简单而有效的的。他们不需要任何广泛的手术设备,可以由一个人完成。然而,这些技术并非没有挑战。产后第2天的幼崽和随后的小目标领域的体积小,可以使注射难以执行,最初具有挑战性的复制。

Protocol

1。侧脑室注射第一步是准备注入股市的解决方案,这些解决方案是病毒载体,质粒DNA,药物,应在无菌条件下注入。 混合0.05%的注射部位的可视化W / V台盼蓝的PBS所需滴度的病毒载体(5-7微升总)。 质粒DNA溶液(5升微升总)包含的D -(+) – 葡萄糖20%(W / V)(1μL),台盼蓝(0.05%),PBS(1μL),质粒(约5〜G /〜L )(2〜L)和2.5 kDa的线性PEI均聚物(150毫米)(1〜L)。…

Discussion

疾病的小鼠模型的研究往往需要药物或其他物质的管理,新生儿。在这段视频中,我们展示了一步一步程序,利用侧脑室(ICV)注射CNS涉及两种类型的注射战略目标的中枢神经系统,可用于:1)直接注射;或2)静脉注射针对时间/面部静脉。这些注射的时间是非常重要的。由于ICV注射写意,头骨必须相对可塑性。这种类型的注射是唯一可能通过的第一个星期的生活,变得越来越具有挑战性的和有害…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者想感谢约翰马斯顿畜牧业专家和博士马可波罗A. Passini技术援助,在这个项目的早期阶段。这项工作是由资助的​​国立卫生研究院慢性淋巴细胞白血病(R01NS41584; R01HD054413)。

Materials

Name of the reagent Company Catalogue number Comments (optional)
Green Food Dye McCormick n/a Must be filtered
Hamilton Glass Syringe (100 μL) Sigma Aldrick 20702  
LuerMxF Thread Style White Nylon Small Parts, Inc. VPLF-LC78-1-25  
Fine gauge Hypodermic Needles Popper 7111 Size: 33(SWG) x ¼” (6.35 MM)
Wee Sight Transilluminator Respironics 1017920  
2.25X Headband Magnifier MagEyes Model No. 5 Select magnification to fit individual preferences

Referenzen

  1. Blanchette, M., Fortin, D. Blood-brain barrier disruption in the treatment of brain tumors. Methods Mol. Biol. 686, 447-463 (2011).
  2. Foust, K. D., Kaspar, B. K. Over the barrier and through the blood: to CNS delivery we go. Cell Cycle. 24, 4017-4018 (2009).
  3. Snyder, E. Y., Taylor, R. M., Wolfe, J. H. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature. 374, 367-370 (1995).
  4. Passini, M. A., Wolfe, J. H. Widespread gene delivery and structure-specific patterns of expression in the brain after intraventricular injections of neonatal mice with an adeno-associated virus vector. J. Virol. 24, 12382-12392 (2001).
  5. Kienstra, K. A., Freysdottir, D., Gonzales, N. M., Hirschi, K. K. Murine neonatal intravascular injections: modeling newborn disease. J. Am. Assoc. Lab. Anim. Sci. 46, 50-54 (2007).
  6. Sands, M. S., Barker, J. E. Percutaneous intravenous injection in neonatal mice. Lab. Anim. Sci. 49, 328-330 (1999).
  7. Foust, K. D. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat. Biotechnol. 28, 271-274 (2010).
  8. Foust, K. D. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59-65 (2009).
  9. Passini, M. A., Watson, D. J., Wolfe, J. H. Gene delivery to the mouse brain with adeno-associated virus. Methods Mol. Biol. 246, 225-236 (2004).
  10. Coady, T. H., Lorson, C. L. Trans-splicing-mediated improvement in a severe mouse model of spinal muscular atrophy. J. Neurosci. 30, 126-130 (2010).
  11. Baughan, T. D., Dickson, A., Osman, E. Y., Lorson, C. L. Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy. Hum. Mol. Genet. 18, 1600-1611 (2009).
  12. Coady, T. H., Baughan, T. D., Shababi, M., Passini, M. A., Lorson, C. L. Development of a single vector system that enhances trans-splicing of SMN2 transcripts. PLoS One. 3, e3468-e3468 (2008).
  13. Dickson, A., Osman, E., Lorson, C. A. Negatively-Acting Bifunctional RNA Increases Survival Motor Neuron in vitro and in vivo. Hum. Gene. Ther. 19, 1307-1315 .
  14. Mattis, V. B., Ebert, A. D., Fosso, M. Y., Chang, C. W., Lorson, C. L. Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model. Hum. Mol. Genet. 18, 3906-3913 (2009).
  15. Williams, J. H. Oligonucleotide-mediated survival of motor neuron protein expression in CNS improves phenotype in a mouse model of spinal muscular atrophy. J. Neurosci. 29, 7633-7638 (2009).
  16. Passini, M. A. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J. Clin. Invest. 120, 1253-1264 (2010).
  17. Shababi, M., Glascock, J., Lorson, C. L. Combination of SMN Trans-Splicing and a Neurotrophic Factor Increases the Life Span and Body Mass in a Severe Model of Spinal Muscular Atrophy. Hum. Gene. Ther. 22, 1-10 (2010).

Play Video

Diesen Artikel zitieren
Glascock, J. J., Osman, E. Y., Coady, T. H., Rose, F. F., Shababi, M., Lorson, C. L. Delivery of Therapeutic Agents Through Intracerebroventricular (ICV) and Intravenous (IV) Injection in Mice. J. Vis. Exp. (56), e2968, doi:10.3791/2968 (2011).

View Video