Summary

右心室收缩压测量组合在小鼠的肺和免疫组织样品的收获

Published: January 16, 2013
doi:

Summary

一个特异,快速的协议,同时探讨合适的心脏功能,肺部炎症和免疫反应,被描述为一种学习工具。视频和数字,描述的生理和显微切割技术在组织团队的方法,是适用于用于小型到大型研究。

Abstract

正确的心脏的功能是把血液通过肺部,从而将右心脏的生理和肺血管生理。炎症的心脏和肺的功能,是一种常见的改性剂,通过制定生产的细胞因子和生长因子,细胞浸润,并开始重塑过程1。

右心室与左心室相比,是一个低压泵工作在一个相对窄的区域的压力变化。增加与肺动脉压力增加的压力在肺血管床和肺动脉高压2。肺动脉高压往往伴有炎症性肺部疾病,如慢性阻塞性肺疾病,自身免疫性疾病3。由于肺动脉高压赋予预后不良的生活质量和寿命,大量的研究是针对了解的机制,mig的HT药物干预4的目标。有效的管理手段,为肺动脉高压的发展面临的主要挑战仍然是复杂的分子和细胞变化在权利的心,肺和免疫系统的同时了解。

在这里,我们提出了一个程序的工作流程,快速,精确的测量压力变化在正确的小鼠心脏的心脏,肺和免疫组织样本的同时收获。该方法是基于直接导管右心室,通过颈内静脉接近上身的小鼠,最早是在20世纪90年代后期,作为替代措施的压力在肺动脉5-13。组织团队的方式有利于快速右心导管检查技术。这使得能够进行测量的小鼠的自发呼吸室内空气。在不同的工作领域的组织的工作流程减少了时间延迟和打开的可能性,同时进行生理实验和收获的免疫系统,心脏和肺组织。

这里列出的程序的工作流程,可以适应各种各样的实验室设置和研究设计,从小型的,有针对性的实验,到大型药物筛选试验。同时采集心肌的生理数据,可以扩展到包括超声心动图5,14-17和收获的心脏,肺和免疫组织减少了需要获得数据的科学知识为基础向前移动的动物。这里介绍的程序的工作流程也提供了理想的基础免疫,肺和心脏功能的网络链接获取知识。这里概述的相同的原则可以适用于研究根据需要的其它的或附加的器官。

Protocol

1。准备准备以下的解决方案和管( 表1)如下: Hanks溶液,无钙,镁或指示器,与青霉素(100单位/毫升)/链霉素(100毫克/毫升)。 磷酸盐缓冲盐水(PBS),1个,无钙,无镁。 乙醇,70%,500毫升。 与PBS缓冲甲醛,7%至10%,使500毫升。 麻醉科的解决方案: 圣阿韦坦。小心地加入2 – 甲基-2 – 丁醇的5毫升至5克的2,2,2 – 三溴乙醇。一?…

Representative Results

获得合适的心脏压力曲线的主要结果是通过合适的心脏导管的正确位置。右心室的导管内部的正确放置的压力时间曲线的形状是重要的,因为会导致压力高原( 图4)。相反,高低不平的曲线,表明由呼吸或心脏跳动的运动靠在墙上的右心室导管移动。为了检测的阶段的动物的生存的潜在的问题,需要计算ΔP,和心脏的速度的标准偏差。预计这两个值都没有显着不同的治疗组之间。此…

Discussion

此处列出的实验流程,允许快速和同时测量右心室收缩压和收获的样品分析的反应在肺部,心脏和免疫系统的小鼠。该过程结合心脏生理学测量,微解剖和随后的组织为活细胞研究,组织学分析,或组学分析的组织收获。的完整过程只需不到20分钟,每鼠标。由于工作区域组织的工作流程,2-3的动物可以同时进行研究。因此,程序是适用于小的,有针对性的实验12和设置在很宽的范围内进?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作是由国家机构的健康1R21HL092370-01(GG),1R01 HL095764-01(GG); R01HL082694(JW),美国心脏协会的创始人联属公司(0855943D,GG),石溪世界 – 赫伯特基金,纽约(SHP)。

Materials

Name Company Catalogue number Comments (optional)
Reagents
2-Methyl-2-butanol Sigma-Aldrich 152463
2,2,2-Tribromoethanol Sigma-Aldrich T48402
disinfectant soap (Coverage Spray TB plus Steris) Fisher Scientific 1629-08
Ethyl Alcohol, 200 Proof, Absolute, Anhydrous ACS/USP Grade PHARMCO-AAPER 111000200 Dilute to 70 % with distilled water
Formaldehyde solution Sigma-Aldrich F1635-500ML Dilute to a 7-10 % formaldehyde concentration at a PBS concentration of 1x using PBS stock solution and water
Hanks solution, no calcium, magnesium Fisher Scientific 21-022-CV
O.C.T Tissue-Tek 4583
Penicillin (10,000 U/ml) / Streptomycin (10,000 mg/ml) solution Thermo Scientific SV30010
Phosphate buffered saline (PBS), no calcium, no magnesium, 1x and 10x solutions Fisher Scientific
Sodium pentobarbital 26% Fort Dodge Animal Health NDC 0856-0471-01
Labware
Plates 12, 24, 96 well Falcon
Transfer Pipet Fisher Scientific 13-711-9BM
Tube, EDTA coated Sarstedt 2013-08
Tubes 0.65 ml and 1.7 ml micro-centrifuge VWR
Tubes 12 x 75 mm polypropylene Fisher Scientific 14-956-1D
Tubes, various sizes, polypropylene Fisher Scientific
Instruments
Forceps, Dumon #5 Fine Fine Science Tools 11254-20
Forceps, extra fine graefe -0.5 mm tips curved Fine Science Tools 11152-10
Forceps, extra fine graefe -0.5 mm tips straight Fine Science Tools 11150-10
Cannula 18 ga, 19 ga BD Precision Glide Needles Cut to optimal length, blunted and outside rasped to create a rough outside surface.
Scissors, Dissector scissors-slim blades 9 cm Fine Science Tools 14081-09
Suture for BAL, braided silk suture, 4-0 Fine Science Tools SP116
Suture for right heart catheterization, braided silk suture, 6-0 Teleflex medical 18020-60
Syringe, 1 ml BD 309659
Equipment
Amplifier, PowerLab 4/30 ADInstrument Model ML866
Catheter, pressure F1.4 Millar Instruments, Inc 840-6719
Dissecting Microscope Variscope
Forceps, Vannas spring scissors-2 mm blades Fine Science Tools 15000-00
Halogen Illuminated Desk Magnifier Fisher Scientific 11-990-56
Laptop computer Asus Model number A52F i5 processor; 15 inch
Light Source Amscope HL-250-A
Pressure Control Unit Millar Instruments, Inc PCU-2000
Software, Labchart-Pro V.7 AD Instruments

Referenzen

  1. Price, L. C., et al. Inflammation in pulmonary arterial hypertension. Chest. 141, 210-221 (2012).
  2. Olschewski, H., et al. Cellular pathophysiology and therapy of pulmonary hypertension. J. Lab. Clin. Med. 138, 367-377 (2001).
  3. Hassoun, P. M., et al. Inflammation, growth factors, and pulmonary vascular remodeling. J. Am. Coll. Cardiol. 54, S10-S19 (2009).
  4. Rabinovitch, M. Molecular pathogenesis of pulmonary arterial hypertension. J. Clin. Invest. 118, 2372-2379 (2008).
  5. Steudel, W., et al. Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3. J. Clin. Invest. 101, 2468-2477 (1998).
  6. Zaidi, S. H., You, X. M., Ciura, S., Husain, M., Rabinovitch, M. Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension. Circulation. 105, 516-521 (2002).
  7. Guignabert, C., et al. Tie2-mediated loss of peroxisome proliferator-activated receptor-gamma in mice causes PDGF receptor-beta-dependent pulmonary arterial muscularization. Am. J. Physiol. Lung Cell Mol. Physiol. 297, L1082-L1090 (2009).
  8. West, J., et al. Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ. Res. 94, 1109-1114 (2004).
  9. Cook, S., et al. Increased eNO and pulmonary iNOS expression in eNOS null mice. Eur. Respir. J. 21, 770-773 (2003).
  10. West, J., et al. Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L744-L755 (2008).
  11. Tu, L., et al. Autocrine fibroblast growth factor-2 signaling contributes to altered endothelial phenotype in pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 45, 311-322 (2011).
  12. Daley, E., et al. Pulmonary arterial remodeling induced by a Th2 immune response. J. Exp. Med. 205, 361-372 (2008).
  13. Song, Y., et al. Inflammation, endothelial injury, and persistent pulmonary hypertension in heterozygous BMPR2-mutant mice. Am. J. Physiol. Heart Circ. Physiol. 295, 677-690 (2008).
  14. Thibault, H. B., et al. Noninvasive assessment of murine pulmonary arterial pressure: validation and application to models of pulmonary hypertension. Circulation. Cardiovascular imaging. 3, 157-163 (2010).
  15. Otto, C., et al. Pulmonary hypertension and right heart failure in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. Circulation. 110, 3245-3251 (2004).
  16. Burton, V. J., et al. Attenuation of leukocyte recruitment via CXCR1/2 inhibition stops the progression of PAH in mice with genetic ablation of endothelial BMPR-II. Blood. 118, 4750-4758 (2011).
  17. Fujita, M., et al. Pulmonary hypertension in TNF-alpha-overexpressing mice is associated with decreased VEGF gene expression. J. Appl. Physiol. 93, 2162-2170 (2002).
  18. Motley, H. L., Cournand, A., Werko, L., Himmelstein, A., Dresdale, D. The Influence of Short Periods of Induced Acute Anoxia Upon Pulmonary Artery Pressures in Man. Am. J. Physiol. 150, 315-320 (1947).
  19. Liljestrand, G. Regulation of Pulmonary Arterial Blood Pressure. Arch. Intern. Med. 81, 162-172 (1948).
  20. Euler, U. S. V., Liljestrand, G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol. Scand. 12, 301-320 (1946).
  21. Van den Broeck, W., Derore, A., Simoens, P. Anatomy and nomenclature of murine lymph nodes: Descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. Journal of immunological. 312, 12-19 (2006).
  22. Rabinovitch, M., et al. Angiotensin II prevents hypoxic pulmonary hypertension and vascular changes in rat. Am. J. Physiol. 254, 500-508 (1988).
  23. Rabinovitch, M., Gamble, W., Nadas, A. S., Miettinen, O. S., Reid, L. Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am. J. Physiol. 236, 818-827 (1979).
  24. Rabinovitch, M., et al. Changes in pulmonary blood flow affect vascular response to chronic hypoxia in rats. Circ. Res. 52, 432-441 (1983).
  25. Kugathasan, L., et al. The angiopietin-1-Tie2 pathway prevents rather than promotes pulmonary arterial hypertension in transgenic mice. J. Exp. Med. 206, 2221-2234 (2009).
  26. Bearer, C., Emerson, R. K., ORiordan, M. A., Roitman, E., Shackleton, C. Maternal tobacco smoke exposure and persistent pulmonary hypertension of the newborn. Environ. Health Persp. , 105-202 (1997).
  27. Graham, B. B., et al. Schistosomiasis-induced experimental pulmonary hypertension: role of interleukin-13 signaling. Am. J. Pathol. 177, 1549-1561 (2010).
  28. Butrous, G., Ghofrani, H. A., Grimminger, F. Pulmonary vascular disease in the developing world. Circulation. 118, 1758-1766 (2008).
  29. Crosby, A., et al. Praziquantel reverses pulmonary hypertension and vascular remodeling in murine schistosomiasis. Am. J. Respir. Crit. Care Med. 184, 467-473 (2011).
check_url/de/50023?article_type=t

Play Video

Diesen Artikel zitieren
Chen, W., Park, S., Hoffman, C., Philip, C., Robinson, L., West, J., Grunig, G. Right Ventricular Systolic Pressure Measurements in Combination with Harvest of Lung and Immune Tissue Samples in Mice. J. Vis. Exp. (71), e50023, doi:10.3791/50023 (2013).

View Video