Summary

制备肿瘤抗原负载成熟树突状细胞免疫治疗

Published: August 01, 2013
doi:

Summary

用于产生在肿瘤免疫治疗中使用的大量的自体树突状细胞(DC)的最常用的方法进行说明。该方法使用的IL-4和GM-CSF分化的单核细胞的树突状。未成熟DC刺激才成熟,然后装入抗原注射到病人。

Abstract

虽然临床研究已证实,抗原负载DC疫苗是安全的,有前途的治疗肿瘤1,其临床疗效还有待建立。下面介绍的方法,符合良好的制造工艺(GMP)指南编制,是一种最常见的体外制备方法产生大量临床研究2区议会优化。

我们的方法利用了合成TLR 3激动剂聚肌胞苷酸聚-L-赖氨酸羧甲基纤维素(聚ICLC),以刺激区议会。我们以前的研究聚ICLC是最有力的个人所评估的上调CD83和CD86,诱导白细胞介素12(IL-12),肿瘤坏死因子(TNF),干扰素γ诱导人DCs的成熟刺激蛋白10(IP-10),interleukmin 1(IL-1),I型干扰素(IFN),以及最小的白细胞介素10(IL-10)的生产。 </p>

区议会从冷冻的外周血单核细胞(PBMCs)白细胞分离得到的是有区别的。聚蔗糖梯度离心分离外周血单个核细胞,并冻结在等分。在第1天,外周血单个核细胞解冻并镀上选择坚持到塑料表面的单核细胞,经过1-2小时的潜伏期在37°C在组织培养孵化器的组织培养瓶中。孵育后,细胞被洗掉粘附单核细胞培养5天的白细胞介素4(IL-4)的存在下,和粒细胞巨噬细胞集落刺激因子(GM-CSF),分化为未成熟DCs。在第6天,未成熟DC脉冲与匙孔血蓝蛋白(KLH)的蛋白质,它作为一个控制疫苗质量,并可能提高疫苗的免疫原性。议会刺激成熟,装有肽抗原,孵育过夜。第7天,将细胞洗涤,并在1毫升等分试样中含有冻结4 – 20×10 6个细胞,使用一个受控速率冷冻。大量释放试验区议会的批次进行,必须符合最低规格之前,他们被注入患者。

Protocol

1。外周血单个核细胞的分离和冷冻保存无菌操作 – 尖峰之一中的白细胞分离袋的接入端口使用的等离子转移集。用60毫升的注射器,转移到无菌的500毫升瓶装获得了患者的白细胞分离。 调整音量的白细胞分离的2倍原体积,使用室温下的RPMI。调匀。 轻轻混合的一瓶聚蔗糖 – 帕确PLUS。 12毫升聚蔗糖 – 帕确PLUS添加到无菌的50毫升锥形管。 轻轻层30毫升稀释后的白细胞分离…

Representative Results

之间的10 – 20%的起始外周血单个核细胞分化成区议会在培养期结束。成熟的DC的CD11c +,CD14-,CD83 +,CD40 +,CCR7 +( 图1)。它们表达高水平的MHC I类和II类分子和共刺激分子CD80和CD86。聚ICLC也诱导了较低水平的PDL-1相比,其他TLR激动剂14。此外,这些聚集成电路成熟的区议会分泌大量IL-12( 图2和图 15,16),诱导增殖的异基因T细胞( 图3)…

Discussion

I期和II期临床试验已经表明,他们的单核细胞来源的DC诱导免疫反应,患者临床成功但已被限制1。这可能是部分原因是由于缺乏共识,如何产生最佳的DC肿瘤免疫治疗应用。虽然有许多方法来产生临床级的DC,这些细胞因子抗原负载的单核细胞,刺激诱导成熟和方法用来区分使用方法不尽相同。的公式产生最佳的DC仍然被定义2。

最近的体外研究表明,?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

笔者想感谢安德烈斯·萨拉萨尔(Oncovir公司)聚ICLC的礼物。

Materials

Reagent/Supplies/Equipment Manufacturer Catalog No.
RPMI-1640 medium with L-glutamine BioWhittaker 12-702F
1M HEPES buffered saline BioWhittaker 17-737E
Phosphate buffered saline (PBS) BioWhittaker 17-516F
Human albumin, 25% solution USP Aventis Behring
Ficoll-Hypaque PREMIUM GE Healthcare 17-5442-03
Human AB serum Valley Biomedical HP1022
Sterile saline USP Hospira
CryoMACS DMSO Miltenyi Biotec 170-076-303
Leukine GM-CSF, 0.5 mg/ml Berlex A02266
MACS GMP IL-4 Miltenyi Biotec 170-076-101
Hiltonol, Poly-ICLC, 2 mg/ml Oncovir NA
VACMUNE KLH Biosyn
225 sq cm EasyFlasks Nalgene Nunc 159934
Falcon 6-well tissue culture plates Becton Dickinson 353046
1.8 ml CryoTube vials Nalgene Nunc 377267
Controlled Rate Freezer Thermo CryoMed

Referenzen

  1. Lesterhuis, W. J., et al. Dendritic cell vaccines in melanoma: from promise to proof. Crit. Rev. Oncol. Hematol. 66, 118-134 (2008).
  2. Sabado, R. L., Bhardwaj, N. Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy. 2, 37-56 (2010).
  3. Schumacher, K. Keyhole limpet hemocyanin (KLH) conjugate vaccines as novel therapeutic tools in malignant disorders. J. Cancer. Res. Clin. Oncol. 127, 1-2 (2001).
  4. Jaatinen, T., Laine, J. Isolation of mononuclear cells from human cord blood by Ficoll-Paque density gradient. Curr. Protoc. Stem Cell Biol. Chapter 2, Unit 2A 1 (2007).
  5. Eichler, H., et al. Multicenter study on in vitro characterization of dendritic cells. Cytotherapy. 10, 21-29 (2008).
  6. Feuerstein, B., et al. A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use. J. Immunol. Methods. 245, 15-29 (2000).
  7. O’Neill, D., Bhardwaj, N. Generation of autologous peptide- and protein-pulsed dendritic cells for patient-specific immunotherapy. Methods Mol. Med. 109, 97-112 (2005).
  8. de Vries, I. J., et al. Phenotypical and functional characterization of clinical grade dendritic cells. J. Immunother. 25, 429-438 (2002).
  9. Jonuleit, H., et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol. 27, 3135-3142 (1997).
  10. Lee, A. W., et al. A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine. 20, A8-A22 (2002).
  11. Bhardwaj, N. Harnessing the immune system to treat cancer. J. Clin. Invest. 117, 1130-1136 (2007).
  12. Gnjatic, S., Sawhney, N. B., Bhardwaj, N. Toll-like receptor agonists: are they good adjuvants?. Cancer J. 16, 382-391 (2010).
  13. Kedl, R. M., Kappler, J. W., Marrack, P. Epitope dominance, competition and T cell affinity maturation. Curr. Opin. Immunol. 15, 120-127 (2003).
  14. Bogunovic, D., et al. TLR4 engagement during TLR3-induced proinflammatory signaling in dendritic cells promotes IL-10-mediated suppression of antitumor immunity. Krebsforschung. 71, 5467-5476 (2011).
  15. Verdijk, R. M., et al. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J. Immunol. 163, 57-61 (1999).
  16. Rouas, R., et al. Poly(I:C) used for human dendritic cell maturation preserves their ability to secondarily secrete bioactive IL-12. Int. Immunol. 16, 767-773 (2004).
  17. Jongmans, W., Tiemessen, D. M., van Vlodrop, I. J., Mulders, P. F., Oosterwijk, E. Th1-polarizing capacity of clinical-grade dendritic cells is triggered by Ribomunyl but is compromised by PGE2: the importance of maturation cocktails. J. Immunother. 28, 480-487 (2005).
  18. Krause, P., et al. Prostaglandin E2 is a key factor for monocyte-derived dendritic cell maturation: enhanced T cell stimulatory capacity despite IDO. J. Leukoc. Biol. 82, 1106-1114 (2007).
  19. Morelli, A. E., Thomson, A. W. Dendritic cells under the spell of prostaglandins. Trends Immunol. 24, 108-111 (2003).
  20. Adams, M., et al. Dendritic cell (DC) based therapy for cervical cancer: use of DC pulsed with tumour lysate and matured with a novel synthetic clinically non-toxic double stranded RNA analogue poly [I]:poly [C(12)U] (Ampligen R). Vaccine. 21 (12), 787-790 (2003).
  21. Colombo, M. P., Trinchieri, G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 13, 155-168 (2002).
  22. Mayordomo, J. I., et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med. 1, 1297-1302 (1995).
  23. Dhodapkar, M. V., et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J. Clin. Invest. 104, 173-180 (1999).
  24. Schuler-Thurner, B., et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J. Exp. Med. 195, 1279-1288 (2002).
check_url/de/50085?article_type=t

Play Video

Diesen Artikel zitieren
Sabado, R. L., Miller, E., Spadaccia, M., Vengco, I., Hasan, F., Bhardwaj, N. Preparation of Tumor Antigen-loaded Mature Dendritic Cells for Immunotherapy. J. Vis. Exp. (78), e50085, doi:10.3791/50085 (2013).

View Video