Summary

朝仿生学木:纳米纤维素,木质素的装配式自由站立电影和合成聚阳离子

Published: June 17, 2014
doi:

Summary

本研究的目的是使用纳米纤维素纤维的层 – 层组装和分离木质素从稀的水性悬浮液组合,以形成合成的植物细胞壁组织。石英晶体微量天平和原子力显微镜的表面测量技术被用来监测聚合物 – 聚合物纳米复合材料的形成。

Abstract

木质材料是由含有层状次生细胞壁多糖和木质素的结构的聚合物组成的植物细胞壁。层 – 层(层层)装配方法,其依赖于从水溶液中带相反电荷的分子的装配来建立木质素和氧化nanofibril纤维素(NFC)的孤立木聚合物的一个独立的复合膜。为方便这些带负电荷的聚合物的组装,带正电荷的聚电解质,聚(diallyldimethylammomium氯化物)(PDDA),被用来作为连接层,以创建该简化模型的细胞壁。分层吸附过程是用石英晶体微量天平与散热监控(QCM-D)和椭偏仪定量研究。结果表明,每一层吸附层的质量/厚度增加,层的总数的函数。吸附层的表面覆盖度,研究了原子力显微镜(AFM)。与木质素在所有的沉积循环的表面的完全覆盖,发现该系统,但是,表面覆盖由NFC随层数。吸附过程进行了250个周期(500个双层)的醋酸纤维素(CA)的衬底。透明自由站立LBL组装纳米复合薄膜,获得当CA衬底后溶解于丙酮中。断裂横截面的扫描电子显微镜(SEM)显示出层状结构,并且每个吸附循环(PDDA-木质素PDDA-NC)的厚度估计为17纳米的研究中使用了两种不同类型的木素。数据表明与高度控制的体系结构,其中纳米纤维素和木质素在空间上沉积的纳米级(聚合物 – 聚合物纳米复合材料),类似的是,在本机细胞壁观察到的膜。

Introduction

有极大的兴趣,从生物质中获得额外的化学品和燃料,如碳光合作用过程中螯合植物是当前的CO 2循环的一部分。大部分固碳(42-44%)是在纤维素的形式,一个β1-4-连接的吡喃葡萄糖单元组成的聚合物;当水解时,葡萄糖可被用作主要的反应物用于发酵成基于酒精的燃料。然而,木本植物细胞壁架构已经进化了数千年创造能抵抗降解在自然环境中1的材料。这种稳定延续到工业加工的木质材料,如能源作物使得纤维素难以进入,隔离和分解成葡萄糖。仔细看看次生壁的超微结构表明,它是嵌入在木质素和下摆的无定形基质分层次晶纤维素微纤维组成的聚合物纳米复合材料icelluloses 2-4。纵取向的纤维素微纤丝的直径为约2-5纳米,这是与其它杂多糖聚合在一起,形成更大的纤维束5的单元。原纤维束被嵌入在木质素半纤维素复合体的苯基丙醇单位的某些联系到其它杂多糖像glucoronoxylan 4的无定形聚合物构成。此外,这种结构进一步组织成层,或片状结晶,整个木质化次生壁6-8。酶,如纤维素酶,有一个非常困难的时间的细胞壁内访问纤维素,因为它被发现在它的原纤维形式和嵌入在木质素。真正使生物基燃料和可再生化学平台成为现实的关键是开发流程,在经济允许的纤维素的原生形式的糖化。

新的化学和成像技术正在帮助在ST参与纤维素9,10的糖化的机制UDY。许多工作都集中在拉曼共焦成像11和原子力显微镜12来研究细胞壁的化学组成和形态。如果能够紧跟脱木素和糖化机制是一个显著的进步,影响纤维素转化为葡萄糖。模型表面的纤维素糖化,通过测量酶动力学速率与石英晶体微量天平与散热监控(QCM-D)13分析。然而,原生细胞壁如上面所指出的高度复杂的,并且这创造了不同的转换过程是如何改变植物细胞壁(聚合物的分子量,化学连接,孔隙率)的结构,歧义。细胞壁物质与已知结构组成的自立式机型会解决这个问题,并允许样品融入最先进的化学和想象力NG设备。

有细胞壁模型的缺乏和几个可用的可归类为聚合物材料的共混物和再生纤维素或细菌纤维素14,酶促聚合木质素-多糖复合物15-17,或模型表面18-21。一些开始像细胞壁模型是含有木质素前体或类似物的纤维素在其微纤丝的形式存在酶聚合的样品。然而,这些材料遭受缺乏组织层结构。为创造纳米复合材料与有组织架构的简单途径是层-层(层层)组装技术,基于聚合物或纳米粒子具有互补收费或官能团而形成有组织的多层复合膜22-25连续吸附。高强度自立混合纳米复合材料,由聚合物层层沉积和做呐noparticles,已报告了科托夫等人 26-30。在许多其它应用中,膜的LbL还研究了其在治疗递送31,燃料电池膜32,33,电池34,和木质纤维素纤维表面改性35-37的潜在用途。在纳米纤维素的近期利益基复合材料导致纳米微晶纤维素(CNC)的制备纤维素纤维的硫酸水解,带正电荷的聚电解质层层38-43多层膜的制备和表征。类似的研究也已开展与海洋tunicin和阳离子聚电解质44,CNC和木葡聚糖45获得纳米微晶纤维素,以及CNC和壳聚糖46。层层叠层形成羧化纳米原纤维素(NFCS),由纸浆纤维与阳离子聚电解质的高压均质得到的也一直研究47-49。的制备,性能和应用的CNC和纳米原纤维详细50-53审阅。

本研究涉及层层技术,因为在一个有序的方式组装孤立的木质纤维素聚合物(如纳米纤维素和木质素)作为实现仿生木质纤维复合材料层状结构的第一步一种潜在方式的检验。的层层技术被选为其良性的加工条件,诸如环境温度,压力,和作为溶剂的水,这是自然形成的复合材料54的条件。在本研究中,我们报告的多层叠合构木构件,即从四甲基哌啶1 – 氧基(TEMPO),纸浆和分离木质素的媒介氧化成自由站立的层状膜的纤维素微纤丝的。两种不同的木质素是从不同的提取技术使用,一个技术从邻木质素rganosolv制浆过程和分离过程中的其它的木质素分离自球磨​​以较少的修改。这些化合物相结合,与合成的聚电解质在此初步研究证明使稳定的自立式薄膜的体系结构类似于天然细胞壁的可行性。

Protocol

1,纳米原纤维素制备55 设置一个3升三颈烧瓶中加入2升去离子水,顶置式搅拌器和pH探头。 添加脱去木质素的牛皮纸浆,88%的亮度(20克,1%(w / v的,干重为基准)),​​2,2,6,6 – 四甲基哌啶1 – 氧基(TEMPO)(0.313克,0.1毫摩尔/克纤维素)和溴化钠(溴化钠,2.0克,1毫摩尔/克纤维素)到烧瓶中。 用顶置式搅拌器混合的纸浆纤维,直到纤维被分散并且没有聚集体…

Representative Results

木质结构聚合物膜的制备QCM-D解析木质素的层层吸附,NFC和PDDA被实时地在2涉及两种类型的木质素的不同实验监测与QCM-D。这种分析方法是非常敏感的检测频率变化时的分子吸附到石英的表面图1包含在一个沉积循环,其中包括两个双层(PDDA的QCM-D反应的详细描述:HMWL和PDDA: NC)。该数据表示在频率和第七泛音(仪器检测的基频和3-13奇次谐波泛音)的损耗归一化的变…

Discussion

纳米纤维素的制备

对于纳米纤维素制造的纸浆纤维的成功氧化是必要的轻便颤动。氧化是通过使用次氯酸钠,在已知量基于纤维素的量应缓慢加入控制。原因之一限定氧化源自长时间的次氯酸钠溶液的储存。这降低了氧化效率可以在反应过程中应注意;纸浆液应通过在成功的氧化反应变成浅黄色的颜色,一部分的方式。如果这不发生,该纤维的羧酸含量通常低于水平,使易于原?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作主要是支持该研究所的关键技术和应用科学(ICTAS)在弗吉尼亚理工大学,弗吉尼亚理工大学研究生院的博士学者的方案支持可持续纳米技术计划,也农业部美国农业部,NIFA授权号码2010-65504-20429。作者还感谢里克·考迪尔,斯蒂芬·麦卡特尼,和W特拉维斯教会对这项工作作出的贡献。

Materials

sulfate pulp Weyerhaeuser  donated brightness level of 88%
organosolv lignin Sigma Aldrich 371017 discontinued
hardwood milled wood lignin see reference in paper
polydiallyldimethylammonium chloride  Sigma Aldrich 409022 Mn = 7.2×10^4, Mw=2.4×10^5
2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO)  Sigma Aldrich 214000 catalytic oxidation of primary alcohols to aldehydes with a purity of 98%, molecular weight is 156.25g/mol
sodium bromide Sigma Aldrich S4547 purity ≥99.0%, molecular weight 102.89
sodium hypochlorite Sigma Aldrich 425044 reagent grade, available chlorine 10~15%, molecular weight 74.44g/mol
sodium hydroxide VWR BDH7221-4 0.5N aqueous solution, density 1.02g/ml, molecular weight 40 g/mol
sodium hydroxide Acros Organics AC12419-0010 0.1N aquesous solution, specific gravity 1.0 g/ml, molecular weight 40 g/mol
ammonium hydroxide Acros Organics AC39003-0025 25% solution in water, pH 13.6, density 0.89, molecular weight 35.04 g/mol
hydrogen peroxide Fisher Scientific H325-100 30.0~32.0% certified ACS, pH 3.3, density 1.11
Mica sheets TED Pella NC9655733 Pelco, grade V5, 10×40mm, 23mm T, minimum air and bubbles, very clean
sulfuric acid Fisher Scientific A300-212 95.0~98.0 w/w%, certified ACS plus, molecular weight 98.08 g/mol
cellulose acetate McMaster Carr 8564K44 degree of substitution 2.5
ethanol Decon Laboratories 04-355-223 200 proof (100%), USP
acetone Fisher Scientific A18-4 purity ≥99.5%, certified ACS reagent grade, density 0.79 g/ml, molecular weight 58.08 g/mol
syringy pump Harvard Apparatus 552226 pump 22 infusion/withdraw with standard syringe holder, flow rate 0.002 ul/h~55.1ml/min
Mill-Q water purification system EMD Millipore D3-UV Direct-Q, UV, water conductivity 18.5 MΩ cm with 20 liter reservair
pH meter Mettler Toledo SeverMulti
balance Mettler Toledo AB135-S accuracy 0.1mg
atomic force microscope Asylum Research MFP-3D, Olympic fluorescent microscope stage
ellipsometer Beaglehole Instruments
fiber centrifuge unknown basket style centrifuge
Warring blender Warring Commercial
ultrasonic processor Sonics Sonics 750W, sound enclosure
Quartz crystal microbalance with dissipation monitoring (QCM-D) Q-Sense Inc.  E4 measure fundamental frequency of 5MHz, and monitor odd number overtones/harmonics from 3~13, use gold-coated piezoelectric quartz crystals
automatted dipper arm Lynxmotion

Referenzen

  1. Fratzl, P., et al. On the role of interface polymers for the mechanics of natural polymeric composites. Phys. Chem. Chem. Phys. 6, 5575-5579 (2004).
  2. Terashima, N., Fukushima, K., He, L. F., Takabe, K. Forage cell wall structure and digestibity. American Society of Agronomy. , 247-270 (1993).
  3. Himmel, M. E., et al. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science. 315, 804-807 (2007).
  4. Terashima, N., et al. Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. J. Wood. Sci. 55, 409-416 (2009).
  5. Fahlén, J., Salmén, L. Pore and Matrix Distribution in the Fiber Wall Revealed by Atomic Force Microscopy and Image Analysis. Biomacromolecules. 6, 433-438 (2005).
  6. Baer, E., et al. Biological and synthetic hierarchical composites. Phys. Today. 45, 60-67 (1992).
  7. Tirrell, D. A., Aksay, I., Baer, E., Calvert, P. D., Cappello, J., Dimarzio, E. A., Evans, E. A., Fessler, J. Hierarchical structures in biology as a guide for new materials technology. National Academy of Sciences. , (1994).
  8. Fengel, D., Wegener, G. . Wood: Chemistry, Ultrastructure, Reactions. , (1984).
  9. Santa-Maria, M., Jeoh, T. Molecular-Scale Investigations of Cellulose Microstructure during Enzymatic Hydrolysis. Biomacromolecules. 11, 2000-2007 (2010).
  10. Saar, B. G., et al. Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy. Angew. Chem. Int. Edit. 49, 5476-5479 (2010).
  11. Schmidt, M., et al. Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa. Planta. 230, 589-597 (2009).
  12. Ding, S. -. Y., Himmel, M. E. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agricul. Food Chem. 54, 597-606 (2006).
  13. Turon, X., et al. Enzymatic kinetics of cellulose hydrolysis: a QCM-D study. Langmuir. 24, 3880-3887 (2008).
  14. Dammströem, S., et al. On the interactions between cellulose and xylan, a biomimetic simulation of the hardwood cell wall. BioResources. 4, 3-14 (2009).
  15. Barakat, A., et al. Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation. Planta. 226, 267-281 (2007).
  16. Micic, M., et al. Study of the lignin model compound supramolecular structure by combination of near-field scanning optical microscopy and atomic force microscopy. Colloids Surf. B Biointerfaces. 34, 33-40 (2004).
  17. Li, Z., et al. Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose. 17, 57-68 (2010).
  18. Gradwell, S. E., et al. Surface modification of cellulose fibers: towards wood composites by biomimetics. C. R. Biologies. 327, 945-953 (2004).
  19. Kaya, A., et al. Surface plasmon resonance studies of pullulan and pullulan cinnamate adsorption onto cellulose. Biomacromolecules. 10, 2451-2459 (2009).
  20. Gustafsson, E., et al. Direct adhesive measurements between wood biopolymer model surfaces. Biomacromolecules. 13, 3046-3053 (2012).
  21. Karabulut, E., Wagberg, L. Design and characterization of cellulose nanofibril-based freestanding films prepared by layer-by-layer deposition technique. Soft Matter. 7, 3467-3474 (2011).
  22. Decher, G., Hong, J. D. Buildup of ultrathin multilayer films by a self-assembly process: II. consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber. Bunsen. Phys. Chem. 95, 1430-1434 (1991).
  23. Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 277, 1232 (1997).
  24. Hammond, P. T. Form and function in multilayer assembly: new applications at the nanoscale. Adv. Mater. 16, 1271-1293 (2004).
  25. Decher, G., Schlenoff, J. B. . Multilayer thin films- sequential assembly of nanocomposite materials. , (2003).
  26. Mamedov, A. A., Kotov, N. A. Free-standing layer-by-layer assembled films of magnetite nanoparticles. Langmuir. 16, 5530-5533 (2000).
  27. Mamedov, A. A., et al. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat. Mater. 1, 257-257 (2002).
  28. Podsiadlo, P., et al. Fusion of seashell nacre and marine bioadhesive analogs: high-strength nanocomposite by layer-by-layer assembly of clay and L-3,4-dihydroxyphenylalanine polymer. Adv. Mater. 19, 949-955 (2007).
  29. Podsiadlo, P., et al. Ultrastrong and stiff layered polymer nanocomposites. Science. 318, 80-83 (2007).
  30. Podsiadlo, P., et al. Can nature’s design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links. J. Phys. Chem. B. 112, 14359-14363 (2008).
  31. Becker, A. L., et al. Layer-by-layer-assembled capsules and films for therapeutic delivery. Small. 6 (17), (2010).
  32. Taylor, A. D., et al. Fuel cell membrane electrode assemblies fabricated by layer-by-layer electrostatic self-assembly techniques. Adv. Funct. Mater. 18, 3003-3009 (2008).
  33. Ashcraft, J. N., et al. Structure-property studies of highly conductive layer-by-layer assembled membranes for fuel cell PEM applications. J. Mater. Chem. 20, 6250-6257 (2010).
  34. Lee, S. W., et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nano. 5, 531-537 (2010).
  35. Eriksson, M., et al. The influence on paper strength properties when building multilayers of weak polyelectrolytes onto wood fibres. J. Colloid Interf. Sci. 292, 38-45 (2005).
  36. Lvov, Y. M., et al. Dry and wet strength of paper: layer-by-layer nanocoating of mill broken fibers for improved paper. 21, 552-557 (2006).
  37. Lin, Z., et al. Nanocomposite-based lignocellulosic fibers 1. Thermal stability of modified fibers with clay-polyelectrolyte multilayers. Cellulose. 15, 333-346 (2008).
  38. Cranston, E. D., Gray, D. G., Barrett, C. J. Abstracts; 32nd Northeast Regional Meeting of the American Chemical Society. , (2004).
  39. Podsiadlo, P., et al. Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules. 6, 2914-2918 (2005).
  40. Cranston, E. D., Gray, D. G. Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Sci. Tech. Adv. Mater. 7, 319-321 (2006).
  41. Cranston, E. D., Gray, D. G. Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules. 7, 2522-2530 (2006).
  42. Jean, B., et al. Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM. Langmuir. 24, 3452-3458 (2008).
  43. Renneckar, S., Zink-Sharp, A., Esker Alan, R., Johnson Richard, K., Glasser Wolfgang, G. Cellulose Nanocomposites. ACS Symposium Series. , 78-96 (2006).
  44. Podsiadlo, P., et al. Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir. 23, 7901-7906 (2007).
  45. Jean, B., et al. Non-electrostatic building of biomimetic cellulose-xyloglucan multilayers. Langmuir. 25, 3920-3923 (2009).
  46. de Mesquita, J. P., et al. Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules. 11, 473-480 (2010).
  47. Wågberg, L., et al. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir. 24, 784-795 (2008).
  48. Aulin, C., et al. Buildup of polyelectrolyte multilayers of polyethyleneimine and microfibrillated cellulose studied by in situ dual-polarization interferometry and quartz crystal microbalance with dissipation. Langmuir. 24, 2509-2518 (2008).
  49. Aulin, C., et al. Self-organized films from cellulose I nanofibrils using the layer-by-layer technique. Biomacromolecules. 11, 872-882 (2010).
  50. Azizi Samir, M. A., et al. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 6, 612-626 (2005).
  51. Siró, I., Plackett, D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. 17, 459-494 (2010).
  52. Eichhorn, S., et al. Review: current international research into cellulose nanofibres and nanocomposites. J. Mat. Sci. 45, 1-33 (2010).
  53. Habibi, Y., et al. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479 (2010).
  54. Teeri, T. T., et al. Biomimetic engineering of cellulose-based materials. Trends Biotechnol. 25, 299-306 (2007).
  55. Saito, T., et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules. 7, 1687-1691 (2006).
  56. Pillai, K. V., Renneckar, S. Cation-π Interactions as a Mechanism in Technical Lignin Adsorption to Cationic Surfaces. Biomacromolecules. 10, 798-804 (2009).
  57. Notley, S. M., Norgren, M. Adsorption of a strong polyelectrolyte to model lignin surfaces. Biomacromolecules. 9, 2081-2086 (2008).
  58. Aulin, C., et al. Buildup of polyelectrolyte multilayers of polyethyleneimine and microfibrillated cellulose studied by in situ dual-polarization interferometry and quartz crystal microbalance with dissipation. Langmuir. 24, 2509-2518 (2008).
  59. Argun, A. A., et al. Highly conductive, methanol resistant polyelectrolyte multilayers. Adv. Mater. 20, 1539-1543 (2008).
  60. Li, Q., Renneckar, S. Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose. 16, 1025-1032 (2009).
  61. Höök, F., et al. Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a auartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal. Chem. 73, 5796-5804 (2001).
  62. Naderi, A., Claesson, P. M. Adsorption properties of polyelectrolyte-surfactant complexes on hydrophobic surfaces studied by QCM-D. Langmuir. 22, 7639-7645 (2006).
  63. Kaufman, E. D., et al. Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and z-potential measurements. Langmuir. 23, 6053-6062 (2007).
  64. Glasser, W. G., Barnett, C. A., Sano, Y. Classification of lignins with different genetic and industrial origins. J. Appl. Polym. Sci.: Appl. Polym. Symp. , (1983).
  65. Van de Steeg, H. G. M., et al. Polyelectrolyte adsorption: a subtle balance of forces. Langmuir. 8, 2538-2546 (1992).
check_url/de/51257?article_type=t

Play Video

Diesen Artikel zitieren
Pillai, K., Navarro Arzate, F., Zhang, W., Renneckar, S. Towards Biomimicking Wood: Fabricated Free-standing Films of Nanocellulose, Lignin, and a Synthetic Polycation. J. Vis. Exp. (88), e51257, doi:10.3791/51257 (2014).

View Video