Summary

结构化的康复协议改进的多功能假肢控制:一个案例研究

Published: November 06, 2015
doi:

Summary

As prosthetic development moves towards the goal of natural control, harnessing amputees’ inherent ability to learn new motor skills may enable proficiency. This manuscript describes a structured rehabilitation protocol, which includes imitation, repetition, and reinforcement learning strategies, for improved multifunctional prosthetic control.

Abstract

在机器人系统的进步已导致在假肢可以制作多功能运动的上肢。然而,这些复杂的系统,需要上肢截肢者学习复杂的控制方案。人类必须学会通过模仿等学习策略的新的运动的能力。本协议描述的结构化的康复方法,其中包括模仿,重复和强化学习,其目的在于评估,如果这种方法可以提高多功能假肢控制。阿左肘关节以下被截肢,用4年的假体的使用体验,在这种情况下,研究的一部分。所使用的假体是米开朗基罗手转动手腕,及腕屈伸的附加功能,这让手部动作的更多的组合。来自58个参与者的南安普敦手工评估程序得分提高到71以下的系统培训。这表明,IMIT的结构化培训协议通货膨胀,重复和强化可能在学习控制新假手的作用。然而,一个更大的临床研究需要支持这些发现。

Introduction

在截肢者更换手功能是一个艰巨的任务。协调高度熟练的手部动作是不是一种与生俱来的能力,并采取人多年的学习开发的1-5手的创伤性丧失之后,复制这种能力通过人工手段不是一个简单的任务,可能需要一段持续的学习。

假肢的设计和对它们的控制接口的方法都受到快速的技术革新,随着多功能控制以自然的方式的目的。6的这些控制系统的复杂性增加了基本上为截肢者提供更多的功能。为了确保这些系统的精确控制,并减少遗弃的新技术,充分的培训需要建立。这可能是比较成功的,如果它是基于截肢者固有的学习策略。

视力可以勒期间发挥重要作用arning手部动作。行为研究表明,通过观察他人7的动作或使用视觉提示8,身强力壮的人学习,并协调新的动作。通过观察,理解和执行观察到行动的过程中,个人能够模仿他人的行为。具体皮质网络,其可包括一个反射镜-神经元系统(MNS),被认为是背后这种能力,并且可以具有在控制假肢的作用。9-11

仿的作用可能不只是被实际上限制为执行该已看到的动作,但连同MNS,允许尚未被观察到,但由观察者的马达repetoire外推运动的执行。12,模仿可能不一定是一种与生俱来的能力,但运动技能随着时间的推移accruement导致有经验的和复杂的行动。13届观察行动,在只是简单想象他们的rength,已被证明是提高学习新的任务。14因此,模仿可能是一个务实的态度来训练截肢者,有证据表明它的目标指向15的方法,用在康复设定目标对实现有用的假手功能。

康复研究已分别显示视觉线索,如一个假手虚拟模拟中,鼓励被截肢者在康复训练。16此外,当使用时在被锁定的范例进行重复已被证明使上肢假体的快速学习控制。17虽然虚拟模拟已经被证明是同样有效的假肢手使体健,体用户控制肌电设备实时控制,使用标准化成果的措施截肢者18它们的作用尚不明确。最后,如​​果上肢AMPU协议塔季翁培训存在的,仿的假体控制学习中的作用没有明确讨论。19,20

本研究旨在理解,如果使用仿制的,在重复和强化相结合,对多功能假肢控制的学习产生积极的影响作为一个系统的培训计划的一部分。

这里介绍的是谁被训练使用的多功能假手一经桡动脉截肢的病例报告。参与者此前曾习惯于传统经营肌电假肢。利用视觉线索,无论是在模仿一个健康的示威者,并为简单的计算机视觉反馈的形式,截肢者提高很快处理了他的新设备。

Protocol

这项研究进行了按照赫尔辛基宣言,作为经当地研究伦理委员会。该研究在全面详细解释,以参与者启动前,让参与者权衡决定自愿参加研究,证实了他的参与知情,同意书的时间。 注:一个人,年龄27年来,在研究中的一部分。参与者有正常视力,被左低于肘部截肢者,并且是一位经验丰富的用户(4年共假体的使用)。在此之前开始这项研究,他用每天的假体是一个4通道?…

Representative Results

经临床人员8人个月前开始测试时,测得他每天假肢参与者的基线SHAP表现为81。 100一SHAP分数代表身强力壮的手部功能。24与会者的天真会拥有较先进的假肢控制系统中打进了58的整体SHAP得分。然而,3个月后,用与新系统没有进一步交互,除了从结构化训练,参与者达到71 SHAP得分用相同的先进系统 ​​( 表2)。 当整体SHAP比分被细分为功能配置文件评估?…

Discussion

我们的研究结果表明了参与这一研究,系统的训练帮助一个单独的会话中改进的多功能假手控制。此处所用的结构化的方案是仿,重复和手部动作的加强件的组合,参与者无法完成与他的传统假手。

虽然参与者的得分更高,他的传统假体在SHAP测试,值得一提的是,他通常穿的设备每天12至15小时之间历时15个月。记录在案的基线SHAP得分,很显然,他已经学会并经过一个很长的…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者要感谢主席汉斯Oppel和他的假肢奥托博克保健品有限公司的技术人员制造在这项研究中所用的参与者插座。这项研究是由财务欧洲研究委员会(ERC)通过ERC高级资助DEMOVE(267888号),奥地利议会研究和技术开发,和奥地利联邦科学,研究和经济支持。

Materials

Michelangelo Hand Otto Bock Healthcare Products GmbH, A 8E500=L-M
AxonRotation Otto Bock Healthcare Products GmbH, A 9S503
Wrist Flexor Otto Bock Healthcare Products GmbH, A  – prototype unit
AxonMaster Otto Bock Healthcare Products GmbH, A 13E500
Electrode Otto Bock Healthcare Products GmbH, A 13E200=50AC
ScissorFenceElectrodeCarrier Otto Bock Healthcare Products GmbH, A  – prototype unit
Acquisition Software Otto Bock Healthcare Products GmbH, A  – prototype unit
Carbon shaft Otto Bock Healthcare Products GmbH, A  – prototype unit

Referenzen

  1. Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S., Westling, G. Development of human precision grip. I: Basic coordination of force. Experimental Brain Research. 85 (2), 451-457 (1991).
  2. Forssberg, H., Kinoshita, H., Eliasson, A. C., Johansson, R. S., Westling, G., Gordon, A. M. Development of human precision grip. II. Anticipatory control of isometric forces targeted for object’s weight. Experimental Brain Research. 90 (2), 393-398 (1992).
  3. Gordon, A. M., Forssberg, H., Johansson, R. S., Eliasson, A. C., Westling, G. Development of human precision grip. III. Integration of visual size cues during the programming of isometric forces. Experimental Brain Research. 90 (2), 399-403 (1992).
  4. Forssberg, H., Eliasson, A. C., Kinoshita, H., Westling, G., Johansson, R. S. Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition. Experimental Brain Research. 104 (2), 323-330 (1995).
  5. Eliasson, A. C., et al. Development of human precision grip. V. anticipatory and triggered grip actions during sudden loading. Experimental Brain Research. 106 (3), 425-433 (1995).
  6. Roche, A. D., Rehbaum, H., Farina, D., Aszmann, O. C. Prosthetic Myoelectric Control Strategies A Clinical Perspective. Current Surgery Reports. 2 (44), (2014).
  7. Buccino, G., et al. Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron. 42 (2), 323-334 (2004).
  8. Saunders, J. A., Knill, D. C. Humans use continuous visual feedback from the hand to control fast reaching movements. Experimental Brain Research. 152 (3), 341-352 (2003).
  9. Rizzolatti, G., Craighero, L. The mirror-neuron system. Annual Review of Neuroscience. 27, 169-192 (2004).
  10. Maruishi, M., et al. Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study. NeuroImage. 21 (4), 1604-1611 (2004).
  11. Cusack, W. F., et al. A Neural activation differences in amputees during imitation of intact versus amputee movements. Frontiers in Human Neuroscience. 6 (June), 182 (2012).
  12. Vogt, S., Buccino, G., Wohlschläger, A. M., Canessa, N., Shah, J. N., Zilles, K., Eickhoff, S. B., Freund, H. J., Rizzolatti, G., Fink, G. R. Prefrontal involvement in imitation learning of hand actions: Effects and expertise. Neuroimage. 37 (4), 1371-1383 (2007).
  13. Gonzalez-Rosa, J. J., Natali, F., Tettamanti, A., Cursi, M., Velikova, S., Comi, G., Gatti, R., Leocani, L. Action observation and motor imagery in performance of complex movements: Evidence from EEG and kinematics analysis. Behavioural Brain Research. 281, 290-300 (2015).
  14. Bekkering, H., Wohlschläger, A. M., Gattis, M. Imitation of gestures in children is goal-directed. The Quarterly Journal of Experimental Psychology. 53 (1), 153-164 (2000).
  15. Catmur, C., Walsh, V., Heyes, C. Associative sequence learning: the role of experience in the development of imitation and the mirror system. Philosophical Transactions of the Royal Society B. 364 (1528), 2369-2380 (2009).
  16. Resnik, L., Etter, K., Klinger, S. L., Kambe, C. Using virtual reality environment to facilitate training with advanced upper-limb prosthesis. Journal of Rehabilitation Research and Development. 48 (6), 707-718 (2011).
  17. Bouwsema, H., van der Sluis, C. K., Bongers, R. M. The role of order of practice in learning to handle an upper-limb prosthesis. Archives of Physical Medicine and Rehabilitation. 89 (9), 1759-1764 (2008).
  18. Bouwsema, H., vander Sluis, C. K., Bongers, R. M. Learning to control opening and closing a myoelectric hand. Archives of Physical Medicine and Rehabilitation. 91 (9), 1442-1446 (2010).
  19. Simon, A. M., Lock, B. A., Stubblefield, K. A. Patient training for functional use of pattern recognition-controlled prostheses. Journal of Prosthetics and Orthotics JPO. 24 (2), 56-64 (2012).
  20. Stubblefield, K. A., Miller, L. A., Lipschutz, R. D., Kuiken, T. A. Occupational therapy protocol for amputees with targeted muscle reinnervation. The Journal of Rehabilitation Research and Development. 46 (4), 481 (2009).
  21. Amsüss, S., Roche, A. D., Göbel, P., Graimann, B., Farina, D., Aszmann, O. C. Regaining high functional, multiple degrees of freedom hand control following bionic reconstruction. , (2014).
  22. Dosen, S., Muller, K. -. R., Farina, D. Myoelectric Control of Artificial Limbs—Is There a Need to Change Focus [In the Spotlight]. IEEE Signal Processing Magazine. 29 (5), (2012).
  23. Amsuess, S., Gobel, P., Graimann, B., Farina, D. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering : A Publication of the IEEE Engineering in Medicine and Biology Society. 4320(c), 1-11 (2014).
  24. Light, C. M., Chappell, P. H., Kyberd, P. J. Establishing a Standardized Clinical Assessment Tool of Pathologic and Prosthetic Hand Function: Normative Data, Reliability, and Validity. Archives of Physical Medicine and Rehabilitation. 83 (6), 776-783 (2002).
  25. Wolpert, D. M., Ghahramani, Z., Jordan, M. I. An internal model for sensorimotor integration. Science (New York, N.Y). 269 (5232), 1880-1882 (1995).
  26. Shadmehr, R., Mussa-Ivaldi, F. A. Adaptive representation of dynamics during learning of a motor task. The Journal of Neuroscience the Official Journal of the Society for Neuroscience. 14 (5 Pt 2), (1994).
  27. Hogervorst, T., Brand, R. A. Mechanoreceptors in joint function. The Journal of Bone and Joint Surgery. American Volume. 80 (9), 1365-1378 (1998).
  28. Bosco, G., Poppele, R. E. Proprioception from a spinocerebellar perspective. Physiological Reviews. 81 (2), 539-568 (2001).
  29. Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C. Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology. 3 (3), 0529-0535 (2005).
  30. Williams, J. H. G., Whiten, A., Waiter, G. D., Pechey, S., Perrett, D. I. Cortical and subcortical mechanisms at the core of imitation. Social Neuroscience. 2 (1), 66-78 (2007).
  31. Allison, T., Puce, A., McCarthy, G. Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences. 4 (7), 267-278 (2000).
  32. Thompson, J. C., Hardee, J. E., Panayiotou, A., Crewther, D., Puce, A. Common and distinct brain activation to viewing dynamic sequences of face and hand movements. NeuroImage. 37 (3), 966-973 (2007).
  33. Binkofski, F., et al. A fronto-parietal circuit for object manipulation in man: Evidence from an fMRI-study. European Journal of Neuroscience. 11 (9), 3276-3286 (1999).
  34. Iacoboni, M. Cortical Mechanisms of Human Imitation. Science. 286 (5449), 2526-2528 (1999).
check_url/de/52968?article_type=t

Play Video

Diesen Artikel zitieren
Roche, A. D., Vujaklija, I., Amsüss, S., Sturma, A., Göbel, P., Farina, D., Aszmann, O. C. A Structured Rehabilitation Protocol for Improved Multifunctional Prosthetic Control: A Case Study. J. Vis. Exp. (105), e52968, doi:10.3791/52968 (2015).

View Video