Summary

硅纳米线场效应晶体管的研制化学生物传感与应用

Published: April 21, 2016
doi:

Summary

We describe key steps for biosensing by using polysilicon nanowire field-effect transistors, including the preparation of the device and the immobilization and confirmation of a DNA molecular probe on the nanowire surface, as well as conditions for DNA sensing.

Abstract

Surveillance using biomarkers is critical for the early detection, rapid intervention, and reduction in the incidence of diseases. In this study, we describe the preparation of polycrystalline silicon nanowire field-effect transistors (pSNWFETs) that serve as biosensing devices for biomarker detection. A protocol for chemical and biomolecular sensing by using pSNWFETs is presented. The pSNWFET device was demonstrated to be a promising transducer for real-time, label-free, and ultra-high-sensitivity biosensing applications. The source/drain channel conductivity of a pSNWFET is sensitive to changes in the environment around its silicon nanowire (SNW) surface. Thus, by immobilizing probes on the SNW surface, the pSNWFET can be used to detect various biotargets ranging from small molecules (dopamine) to macromolecules (DNA and proteins). Immobilizing a bioprobe on the SNW surface, which is a multistep procedure, is vital for determining the specificity of the biosensor. It is essential that every step of the immobilization procedure is correctly performed. We verified surface modifications by directly observing the shift in the electric properties of the pSNWFET following each modification step. Additionally, X-ray photoelectron spectroscopy was used to examine the surface composition following each modification. Finally, we demonstrated DNA sensing on the pSNWFET. This protocol provides step-by-step procedures for verifying bioprobe immobilization and subsequent DNA biosensing application.

Introduction

硅纳米线场效应晶体管(SNWFETs)具有超高灵敏度的优势和环境电荷变化直接电响应。在n型SNWFETs例如,当一个负(或正)电荷的分子接近硅纳米线(SNW)在SNW的载流子被耗尽(或累加)。因此,SNWFET的导电性降低(或增加)1。因此,SNWFET装置的SNW表面附近的任何带电分子可以被检测出来。重要的生物分子包括酶,蛋白质,核苷酸,和许多分子在细胞表面上的电荷载流子,并且可以使用SNWFETs进行监测。用适当的改进,尤其是固定在SNW生物分子探针,SNWFET可开发成一个无标记生物传感器。

使用生物标志物监测是诊断疾病的关键。如表1所示,一些研究已经使用NWFE基于T型生物传感器为无标记,超高灵敏度,及各种生物靶的实时检测,包括单个病毒2,三磷酸腺苷和激酶结合3,神经信号4,金属离子5,6-,细菌毒素7,8多巴胺,9-11 DNA,RNA 12,13,酶和癌症生物标志物14-19,人体激素20,和细胞因子21,22。这些研究已经表明,基于NWFET生物传感器代表了一个广泛的范围内,在溶液中的生物和化学物质的强大检测平台。

在基于SNWFET生物传感器,固定在装置的SNW表面上的探头识别特定biotarget。固定化生物探针通常涉及一系列步骤,这是至关重要的是适当地进行每一步以确保生物传感器的适当运作。各种技术已经开发了用于分析在Surface组合物,包括X射线光电子能谱(XPS),椭圆偏振,接触角测定,原子力显微镜(AFM)和扫描电子显微镜(SEM)。法如原子力显微镜和SEM提供纳米线设备上的生物探针固定的直接证据,而如XPS,椭偏仪,接触角测量方法是依赖对其他类似材料进行平行实验。在这份报告中,我们描述每次修改一步使用两个独立的方法的确认。 XPS是用来检查在多晶硅晶片的特定原子的浓度,并且在该装置的电特性的变化被测量直接确认SNW表面上的电荷变化。我们通过使用多晶硅SNWFETs(pSNWFETs)为例来说明这个协议采用DNA生物传感器。在SNW表面上固定DNA探针包括三个步骤:在SNW,人的天然的羟基面上胺基改性醛团改性,和5'-aminomodified DNA探针固定。在每一个修改步骤,该设备可以直接检测在电荷固定在SNW表面上的官能团的变型中,由于表面电荷造成过能改变沟道电流和电导1栅极电介质本地界面电势的变化。围绕SNW表面可电调节pSNWFET装置的电性能收费;因此,SNW的表面性质在确定pSNWFET器件的电特性起到至关重要的作用。在所报告的程序,SNW表面上的生物探针的固定化可直接测定,并通过电测定确认,且设备为生物传感应用制备。

Protocol

1.制作和pSNWFET设备的保护 器件制造 注意:pSNWFET用侧墙技术如先前报道23,24制成。 制备的栅极介电层。 帽100纳米厚的热氧化物(SiO 2)的,通过使用湿氧化工艺25(O 2和H 2处理气体在980℃下4小时)层上的Si衬底。 通过使用低压化学气相沉积(LPCVD)25在980℃进行4小时沉积50纳米厚的氮化物( 的 Si …

Representative Results

各种SNWFETs已经报道作为生物传感器( 表1)的换能器。单晶SNWFETs(sSNWFETs)和pSNWFETs显示可比电特性如在水溶液中的换能器,并且都被报道具有许多生物传感应用。在此研究中使用的pSNWFET装置的一个有利的特点是它的简单和低成本的制造过程。 图1a示出了涉及在制造pSNWFET的关键步骤。获得从6英寸晶片( 图1b)和一个单一的设备的SEM?…

Discussion

商业化自上而下和sSNWFETs,是因为它的成本32,33,SNW位置控制34,35,其低生产规模36认为难以自下而上的方法制造。与此相反,制造pSNWFETs是简单,成本低37。通过自上而下的方法和组合与侧墙形成技术( 图1),该SNW的大小可通过调整反应性等离子体蚀刻的持续时间来控制。用于制备在图1a所示的所述pSNWFET的纳米线的步骤可容易地适于商业?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

This research was financially supported by Ministry of Science and Technology, Taiwan (104-2514-S-009 -001, 104-2627-M-009-001 and 102-2311-B-009-004-MY3). We thank the National Nano Device Laboratories (NDL) for its valuable assistance during device fabrication and analysis.

Materials

Acetone ECHO AH-3102
(3-Amonopropyl)triethoxysilane (APTES), ≥98% Sigma-Aldrich A3648 Danger
Ethanol, anhydrous, 99.5% ECHO 484000203108A-72EC
Glutaraldehyde solution (GA), 50% Sigma-Aldrich G7651 Avoid light
Sodium cyanoborohydride, ≥95.0%  Fluka 71435 Danger and deliquescent
Sodium phosphate tribasic dodecahydrate, ≥98% Sigma 04277
Phosphoric acid, ≥99.0% Fluka 79622 Deliquescent
Photoresist (iP3650) Tokyo Ohka Kogyo Co., LTD THMR-iP3650 HP
Synthetic oligonucleotides, HPLC purified Protech Technology
Tris(hydroxymethyl)aminomethane (Tris), ≥99.8% USB 75825
Keithley 2636 System SourceMeter Keithley
SR830 DSP Lock-In Amplifier Stanford Research Systems
SR570 Low-noise Current Preamplifier Stanford Research Systems
Ni PXI Express National Instruments

Referenzen

  1. Lin, C. H. et al. Surface composition and interactions of mobile charges with immobilized molecules on polycrystalline silicon nanowires. Sensor Actuat B-Chem 211, 7-16 (2015).
  2. Patolsky, F. et al. Electrical detection of single viruses. P Natl Acad Sci USA 101, 14017-14022 (2004).
  3. Wang, W. U., Chen, C., Lin, K. H., Fang, Y., & Lieber, C. M. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. P Natl Acad Sci USA. 102, 3208-3212 (2005).
  4. Patolsky, F. et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100-1104 (2006).
  5. Bi, X. et al. Development of electrochemical calcium sensors by using silicon nanowires modified with phosphotyrosine. Biosens Bioelectron 23, 1442-1448 (2008).
  6. Lin, T. W. et al. Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. P Natl Acad Sci USA 107, 1047-1052 (2010).
  7. Mishra, N. N. et al. Ultra-sensitive detection of bacterial toxin with silicon nanowire transistor. Lab on a chip 8, 868-871 (2008).
  8. Lin, C. H. et al. Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. Chem Commun. 5749-5751 (2008).
  9. Hahm, J., & Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4, 51-54 (2004).
  10. Lin, C. H. et al. Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA. Biosens Bioelectron 24, 3019-3024 (2009).
  11. Wu, C. C. et al. Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor. Biosens Bioelectron 25, 820-825 (2009).
  12. Zhang, G.-J. et al. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sensor Actuat B-Chem 146, 138-144 (2010).
  13. Lu, N. et al. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small. 10, 2022-2028 (2014).
  14. Zheng, G., Patolsky, F., Cui, Y., Wang, W. U., & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 23, 1294-1301 (2005).
  15. Choi, J. H., Kim, H., Choi, J. H., Choi, J. W., & Oh, B. K. Signal enhancement of silicon nanowire-based biosensor for detection of matrix metalloproteinase-2 using DNA-Au nanoparticle complexes. ACS Appl Mater Interfaces. 5, 12023-12028 (2013).
  16. Lin, T. Y. et al. Improved silicon nanowire field-effect transistors for fast protein-protein interaction screening. Lab Chip 13, 676-684 (2013).
  17. Chen, H. C. et al. A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis. Biosens Bioelectron 66, 198-207 (2015).
  18. Lee, H. S., Kim, K. S., Kim, C. J., Hahn, S. K., & Jo, M. H. Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs. Biosens Bioelectron. 24, 1801-1805 (2009).
  19. Chua, J. H., Chee, R. E., Agarwal, A., Wong, S. M., & Zhang, G. J. Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal Chem. 81, 6266-6271 (2009).
  20. Lu, N. et al. Label-free and rapid electrical detection of hTSH with CMOS-compatible silicon nanowire transistor arrays. ACS Appl Mater Interfaces 6, 20378-20384 (2014).
  21. Chen, H. C. et al. Magnetic-composite-modified polycrystalline silicon nanowire field-effect transistor for vascular endothelial growth factor detection and cancer diagnosis. Anal Chem 86, 9443-9450 (2014).
  22. Zhang, Y. L. et al. Silicon Nanowire Biosensor for Highly Sensitive and Multiplexed Detection of Oral Squamous Cell Carcinoma Biomarkers in Saliva. Anal Sci 31, 73-78 (2015).
  23. Lin, H. C. et al. A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel. Ieee Electr Device L 26, 643-645 (2005).
  24. Lin, H. C., Lee, M. H., Su, C. J., & Shen, S. W. Fabrication and characterization of nanowire transistors with solid-phase crystallized poly-Si channels. Ieee T Electron Dev. 53, 2471-2477 (2006).
  25. Doering, R., & Nishi, Y. Handbook of semiconductor manufacturing technology. 2nd edn, CRC Press, (2008).
  26. Lu, M. P., Hsiao, C. Y., Lai, W. T., & Yang, Y. S. Probing the sensitivity of nanowire-based biosensors using liquid-gating. Nanotechnology. 21, 425505 (2010).
  27. Gaspar, J. et al. Digital lock in amplifier: study, design and development with a digital signal processor. Microprocess Microsy 28, 157-162 (2004).
  28. Vezenov, D. V., Noy, A., Rozsnyai, L. F., & Lieber, C. M. Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. J Am Chem Soc. 119, 2006-2015 (1997).
  29. Townsend, M. B. et al. Experimental evaluation of the FluChip diagnostic microarray for influenza virus surveillance. J Clin Microbiol 44, 2863-2871 (2006).
  30. Wang, L. C. et al. Simultaneous detection and differentiation of Newcastle disease and avian influenza viruses using oligonucleotide microarrays. Vet Microbiol 127, 217-226 (2008).
  31. Lin, C.-H. et al. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA. Jpn J Appl Phys 51, 02BL02 (2012).
  32. Lee, K. N. et al. Well controlled assembly of silicon nanowires by nanowire transfer method. Nanotechnology 18 445302 (2007).
  33. Li, Z. et al. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4, 245-247 (2004).
  34. McAlpine, M. C. et al. High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett 3, 1531-1535 (2003).
  35. Cui, Y., Wei, Q., Park, H., & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 293, 1289-1292 (2001).
  36. Patolsky, F., Zheng, G., & Lieber, C. M. Nanowire-based biosensors. Anal Chem. 78, 4260-4269 (2006).
  37. Hsiao, C. Y. et al. Novel poly-silicon nanowire field effect transistor for biosensing application. Biosens Bioelectron 24, 1223-1229 (2009).
check_url/de/53660?article_type=t

Play Video

Diesen Artikel zitieren
Wu, J. Y., Lin, C., Feng, M., Chen, C., Su, P., Yang, P., Zheng, J., Fu, C., Yang, Y. Preparation of Silicon Nanowire Field-effect Transistor for Chemical and Biosensing Applications. J. Vis. Exp. (110), e53660, doi:10.3791/53660 (2016).

View Video