Summary

유도와 인간의 운동시 골격근 손상의 평가

Published: December 11, 2016
doi:

Summary

This article describes a safe and reliable method to induce and quantify exertional skeletal muscle damage in human subjects.

Abstract

자발적 편심 (연장) 수축을 통해 수축에 의한 근육 손상은 인간의 근육 적응과 회복을 공부를위한 훌륭한 모델을 제공합니다. 여기에서 우리는 강도, 통증, 혈장 크레아틴 키나아제 수준의 변화에 ​​의해 표시된 대퇴사 두근 근육에 손상을 유도하는 편심 운동 프로토콜의 설계에 대해 설명합니다. 이 피험자의 수행 결과의 종간 번역을 제거되기 때문에,이 방법은 간단 윤리적 널리 적용 할 수있다. 과목의 속도로 무릎 신근 근육의 300 최대 편심 수축을 수행 120 ° / 등속 동력계에 초. 손상 정도는 운동 다음 며칠 동안 강도의 손실, 통증 및 플라즈마 크레아틴 키나아제 레벨 비교적 비 침습적 등속 및 메트릭 측정을 이용하여 측정 가능하다. 따라서, 그 애플리케이션은 근육 메커니즘을 식별하기위한 시도에 관한 특정 집단 수적응 및 재생.

Introduction

The overall goal of this procedure is to induce exertional damage to the quadriceps femoris muscles using voluntary lengthening (eccentric) contractions in human subjects.

Contraction-induced skeletal muscle damage is a common consequence of exercise that is marked by delayed onset muscle soreness1, transient strength loss, and elevated muscle-specific enzymes in the blood2. Exertional muscle damage is most pronounced following exercise to which the subject is unaccustomed, particularly when eccentric contractions are involved3. Exertional muscle damage is typically benign. Soreness subsides, and both serum proteins and strength typically return to pre-damage levels within a few days to weeks after the damaging insult. In extreme cases, exertional muscle damage can lead to a life-threatening syndrome know as rhabdomyolysis. However, exertional muscle damage is usually insufficient to cause clinical rhabdomyolysis in healthy individuals4 in the absence of compounding factors including heat stress, dehydration5, infection6 or rare genetic predispositions7.

Contraction-induced muscle damage is typically less severe than toxin-induced or freezing-induced injury, methods often used in rodent studies8,9. Yet, contraction-induced injury provides a useful method to study the muscle damage response with notable advantages. First, it is a safe and ethical method for use with human subjects1-3. Thus, interspecies translation of the results is not needed as data can be obtained directly from human subjects. Moreover, translating data obtained from rodent studies is very difficult given that the severity of injury seen in the rodent injury models exceeds the level of damage that would be ethical to induce in human subjects. Second, contraction-induced damage is commonly experienced and a natural process of exercise. Therefore, this mode of damage induction is useful for studying muscle damage in the context of exercise, adaptation to exercise as well as overt muscle injury. Here we describe a safe and reliable method to induce and evaluate skeletal muscle damage using lengthening contractions in humans.

Protocol

다음 절차는 브리검 영 대학 기관 검토위원회 (IRB)의 기준에 따라 있습니다. 1. 수축 프로토콜을 준비 참고 : 다음 프로토콜 지침은 Biodex의 장점 소프트웨어를 기반으로합니다. 소프트웨어를 탐색하고 서로 다른 시스템을 사용하는 경우 동력계를 운영하는 것은 다른 것입니다. 등속 강도 시험 프로토콜 컴퓨터의 등속 프로토콜, 개방 동력?…

Representative Results

여기에 제시된 방법, 기준 통증, 혈청 크레아틴 키나아제 활성과 힘을 사용하여 (아이소 메트릭 및 등속) 측정은 7 훈련받지 않은 젊은 남성에서 촬영되었다. 다음 날, 주제는 상기 편심 수축 프로토콜을 손상 근육을 시행 하였다. , 근육 손상의 지표를 제공 만들어진 강도, 통증 및 혈청 크레아틴 키나아제 활성의 평가를 수행하십시오. 강도 운동 후뿐만 아니라, 24, 48, 72, ?…

Discussion

몇 가지 단계는이 프로토콜의 원하는 결과를 얻기에 중요하다. 첫째, 대상은 적절하게 수축 프로토콜, 특히 힘 측정에 익숙해야합니다. 피사체가 그들이 할 그들에게 데이터 수집하기 전에 강도 시험을 연습 할 수있는 기회를 제공 할 것으로 예상된다 정확히 이해하고 있는지 확인하십시오. 적절하게이 절차에 익숙하지 않는 주제는 손상을 유도 다음 일 학습 곡선을 표시 할 수 있습니다. 이것은 …

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

Biodex Dynomometer Biodex Medical Systems 850-000 Other models are available and should produce similar results
Creatine Kinase kit Sigma-Aldrich  MAK116
Serum Vacutainers BD Bioscience 367812
Winged safety push button blood collection set BD Bioscience 367338
Cryogenic vials Sigma-Aldrich  V5007 We use the 2mL vials to store serum aliquots

Referenzen

  1. Deyhle, M. R., et al. Skeletal Muscle Inflammation Following Repeated Bouts of Lengthening Contractions in Humans. Front. Physiol. 6, 424 (2015).
  2. Hyldahl, R. D., et al. Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB J. 29 (7), 2894-2904 (2015).
  3. Hyldahl, R. D., Olson, T., Welling, T., Groscost, L., Parcell, A. C. Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise. Front. Physiol. 5, 485 (2014).
  4. Clarkson, P. M., Kearns, A. K., Rouzier, P., Rubin, R., Thompson, P. D. Serum creatine kinase levels and renal function measures in exertional muscle damage. Med. Sci. Sports Exerc. 38 (4), 623-627 (2006).
  5. Clarkson, P. M. Exertional rhabdomyolysis and acute renal failure in marathon runners. Sports Med. 37 (4-5), 361-363 (2007).
  6. Seedat, Y. K., Aboo, N., Naicker, S., Parsoo, I. Acute renal failure in the "Comrades Marathon&#34 runners. Ren. Fail. 11 (4), 209-212 (1989).
  7. Landau, M. E., Kenney, K., Deuster, P., Campbell, W. Exertional rhabdomyolysis: a clinical review with a focus on genetic influences. J. Clin. Neuromuscul. Dis. 13 (3), 122-136 (2012).
  8. Warren, G. L., et al. Role of CC chemokines in skeletal muscle functional restoration after injury. Am. J. Physiol. Cell Physiol. 286 (5), C1031-C1036 (2004).
  9. Zhang, J., et al. CD8 T cells are involved in skeletal muscle regeneration through facilitating MCP-1 secretion and Gr1(high) macrophage infiltration. J. Immunol. 193 (10), 5149-5160 (2014).
  10. Cermak, N. M., Noseworthy, M. D., Bourgeois, J. M., Tarnopolsky, M. A., Gibala, M. J. Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerve. 46 (1), 42-50 (2012).
  11. Chen, Y. W., Hubal, M. J., Hoffman, E. P., Thompson, P. D., Clarkson, P. M. Molecular responses of human muscle to eccentric exercise. J. Appl. Physiol. 95 (6), 2485-2494 (2003).
  12. Stasinger, S. K., Di Lorenzo, M. S. . Phlebotomy Textbook. , 188-203 (2011).
  13. Hubal, M. J., Chen, T. C., Thompson, P. D., Clarkson, P. M. Inflammatory gene changes associated with the repeated-bout effect. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294 (5), R1628-R1637 (2008).
  14. Stupka, N., Tarnopolsky, M. A., Yardley, N. J., Phillips, S. M. Cellular adaptation to repeated eccentric exercise-induced muscle damage. J. Appl. Physiol. 91 (4), 1669-1678 (2001).
  15. Smith, L. L., et al. Changes in serum cytokines after repeated bouts of downhill running. Appl. Physiol. Nutr. Metab. 32 (2), 233-240 (2007).
  16. Marqueste, T., Giannesini, B., Fur, Y. L., Cozzone, P. J., Bendahan, D. Comparative MRI analysis of T2 changes associated with single and repeated bouts of downhill running leading to eccentric-induced muscle damage. J. Appl. Physiol. 105 (1), 299-307 (2008).
  17. Crameri, R. M., et al. Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J. Physiol. 583 (Pt 1), 365-380 (2007).
  18. Yu, J. G., Malm, C., Thornell, L. E. Eccentric contractions leading to DOMS do not cause loss of desmin nor fibre necrosis in human muscle. Histochem. Cell Biol. 118 (1), 29-34 (2002).
  19. Jamurtas, A. Z., et al. Comparison between leg and arm eccentric exercises of the same relative intensity on indices of muscle damage. Eur. J. Appl. Physiol. 95 (2-3), 179-185 (2005).
check_url/de/54859?article_type=t

Play Video

Diesen Artikel zitieren
Deyhle, M. R., Sorensen, J. R., Hyldahl, R. D. Induction and Assessment of Exertional Skeletal Muscle Damage in Humans. J. Vis. Exp. (118), e54859, doi:10.3791/54859 (2016).

View Video