Summary

The Colon-26 Carcinoma Tumor-bearing Mouse as a Model for the Study of Cancer Cachexia

Published: November 30, 2016
doi:

Summary

Mice bearing the Colon-26 (C26) carcinoma represent a classical model of cancer cachexia. Progressive muscle wasting occurs in association with tumor growth, over-expression of muscle-specific ubiquitin ligases, and reductions in muscle cross-sectional area. Fat loss is also observed. Cachexia is studied in a time-dependent manner with increasing severity of wasting.

Abstract

Cancer cachexia is the progressive loss of skeletal muscle mass and adipose tissue, negative nitrogen balance, anorexia, fatigue, inflammation, and activation of lipolysis and proteolysis systems. Cancer patients with cachexia benefit less from anti-neoplastic therapies and show increased mortality1. Several animal models have been established in order to investigate the molecular causes responsible for body and muscle wasting as a result of tumor growth. Here, we describe methodologies pertaining to a well-characterized model of cancer cachexia: mice bearing the C26 carcinoma2-4. Although this model is heavily used in cachexia research, different approaches make reproducibility a potential issue. The growth of the C26 tumor causes a marked and progressive loss of body and skeletal muscle mass, accompanied by reduced muscle cross-sectional area and muscle strength3-5. Adipose tissue is also lost. Wasting is coincident with elevated circulating levels of pro-inflammatory cytokines, particularly Interleukin-6 (IL-6)3, which is directly, although not entirely, responsible for C26 cachexia. It is well-accepted that a primary mechanism by which the C26 tumor induces muscle tissue depletion is the activation of skeletal muscle proteolytic systems. Thus, expression of muscle-specific ubiquitin ligases, such as atrogin-1/MAFbx and MuRF-1, represent an accepted method for the evaluation of the ongoing muscle catabolism2. Here, we present how to execute this model in a reproducible manner and how to excise several tissues and organs (the liver, spleen, and heart), as well as fat and skeletal muscles (the gastrocnemius, tibialis anterior, and quadriceps). We also provide useful protocols that describe how to perform muscle freezing, sectioning, and fiber size quantification.

Introduction

Muscle wasting is a serious complication of various clinical conditions such as cancer, sepsis, liver, cirrhosis, heart and kidney failure, chronic obstructive pulmonary disease, and AIDS. In particular, muscle wasting is evident in at least 50% of patients with cancer1. Loss of skeletal muscle in cancer results from increased protein degradation due to the over-activation of the skeletal muscle proteolytic systems and/or from decreased protein synthesis6. Lipolysis is also evident, leading to the depletion of adipose tissue. Clinically, cachexia is associated with reduced quality and length of life and is estimated to be the cause of death in 20 – 30% of cancer patients7. Use of experimental models that resemble the human disease as closely as possible would be beneficial. An optimal animal model is characterized by high reproducibility, as well as by limited interference from different therapies and the unpredictable factors of diet, sex, and genetic background that are usually associated with the clinical condition8. So far, cancer cachexia has been studied mainly in animal models characterized by transplantation of cancer cells or injection of carcinogens, although a new method is to use genetically modified mice susceptible to the development of cancer.

Mice bearing the C26 carcinoma (also referred to as colon-26 and adenocarcinoma) represent a well-characterized and extensively used model of cancer cachexia2,5. The growth of the C26 tumor results in body and muscle weight loss, mainly through enhanced fat and protein catabolism9. Generally, a 10% tumor weight versus total body weight is associated with a reduction of 20-25% in skeletal muscle weight and a greater depletion of fat3,10. Hepatomegaly and splenomegaly are also observed with tumor growth, along with the activation of the acute phase response and the elevation of pro-inflammatory cytokine levels3,11. Among these, it is well known that IL-6 plays a pivotal role in mediating muscle wasting in the C26 model, even though this cytokine is probably not the only inducer of cachexia12. Elevated IL-6 causes muscle atrophy through activation of the JAK/STAT3 pathway, and inhibiting this transcription factor can prevent muscle wasting3,4.

During C26-induced muscle wasting, as in many conditions of muscle atrophy, muscle mass is lost largely through reductions in muscle protein content across muscle fibers, not through cell death or loss of fibers13. In C26 cachexia, a shift towards smaller cross-sectional areas is observed in both glycolytic and oxidative fibers2. This is also consistent with reduced muscle strength5. Many groups worldwide have taken advantage of the C26 model in order to discover new mediators of muscle wasting or clinically relevant drugs for cancer cachexia. However, many different procedures for the use of this model have been reported, raising concerns about the consistency of the obtained data and posing barriers to reproducibility in different experimental conditions. Here we report a typical use of this model for the study of cancer cachexia that yields standardized and reproducible data.

Protocol

Ethics Statement: All studies described were approved by the Institutional Animal Care and Use Committees of the Thomas Jefferson University and Indiana University School of Medicine. 1. C26 Cell Growth and Preparation Obtain C26 colorectal cancer cells (Ohio State University Medical Center (OSUMC)) and prepare complete growth medium (i.e., high-glucose Dulbecco's Modified Eagle's Medium (DMEM) containing 10% Fetal Bovine Serum (FBS), 1 mM sodium pyruvate, 1% gluta…

Representative Results

C26 tumor growth kinetics show a lag phase for the first 7 – 8 d after injection, followed by exponential cell growth (4 – 5 d). The tumor mass eventually reaches ~10% of the body weight (about 2 g; Figure 1A-B). During the first phase, the tumor can be located by palpation only and appears as a small protrusion of the skin. In the second phase, the tumor is observed as a mass under the skin. Rarely, the tumor becomes ulcerated, resulting in an open wound…

Discussion

Especially in its latest stages, colorectal cancer is associated with the development of cachexia, which is responsible for poorer outcomes and reductions in patient quality of life. Many studies have focused on the treatment of conditions secondary to cancer; however, despite many efforts in this direction, there is still no approved therapy for cancer cachexia21. Thus, it is imperative that animal models resemble the human pathology as closely as possible in order to maximize the translation of findings.

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

We thank Richard Lieber and Shannon Bremner for their ImageJ macro and instructions. While at Thomas Jefferson University, this work was supported by the Pennsylvania Department of Health CURE Grant TJU No. 080-37038-AI0801. Subsequently, this study was supported by a grant to AB from the National Institutes of Health (R21CA190028), and by grants to TAZ from the National Institutes of Health (R01CA122596, R01CA194593), the IU Simon Cancer Center, the Lustgarten Foundation, the Lilly Foundation, Inc., and the IUPUI Pancreas Signature Center.

Materials

Cell culture Flasks Falcon – Becton Dickinson 35-5001
DMEM Cellgro 10-017-CV
FBS Gibco 26140
Streptomycin-Penicillin  Cellgro 30-002-CI
CD2F1 mice Harlan 060
Anesthesia apparatus EZ-Anesthesia EZ-7000
2-Methyl Butane Sigma-Aldrich M32631
OCT Tissue-Tek 4583
Cryostat Leica CM1850
Cork disks Electron Microscopy Sciences 63305
Superfrost plus glass slides VWR 48311-703
Anti-Laminin Rabbit polyclonal antibody Sigma-Aldrich L9393
Anti-Dystrophin Mouse Monoclonal antibody Vector Laboratories VP-D508
Alexa Flour 594 anti-mouse IgG Life Technologies A11062
Alexa Flour 594 anti-rabbit IgG Life Technologies A21211
Hematoxylin Sigma-Aldrich GHS216
Eosin Sigma-Aldrich HT110332
Xylene Acros Organics 422680025
Cytoseal-XYL Thermo 8312-4
Microscope Zeiss Observer.Z1 
Bamboo Tablet Wacom CTH-661
Prism 7.0 for Mac OS X GraphPad Software, Inc.
Excel for Mac 2011 Microsoft Corp.
Image J US National Institutes of Health IJ1.46 http://rsbweb.nih.gov/ij/download.html
Microtainer BD 365873

Referenzen

  1. Tan, B., Fearon, K. Cachexia: prevalence and impact in medicine. Curr Opin Clin Nutr Metab Care. 11, 400-407 (2008).
  2. Aulino, P., et al. Molecular cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse. BMC cancer. 10, 363 (2010).
  3. Bonetto, A., et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PloS One. 6, e22538 (2011).
  4. Bonetto, A., et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab. 303, E410-E421 (2012).
  5. Bonetto, A., et al. Deacetylase inhibitors modulate the myostatin/follistatin axis without improving cachexia in tumor-bearing mice. Current Cancer Drug Targets. 9, 608-616 (2009).
  6. Acharyya, S., et al. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. The Journal of Clinical Investigation. 114, 370-378 (2004).
  7. Fearon, K., et al. Definition and classification of cancer cachexia: an international consensus. The Lancet Oncology. 12, 489-495 (2011).
  8. Holecek, M. Muscle wasting in animal models of severe illness. Int J Exp Pathol. 93, 157-171 (2012).
  9. Acharyya, S., et al. Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell. 8, 421-432 (2005).
  10. Benny Klimek, ., E, M., et al. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochemical and Biophysical Research Communications. 391, 1548-1554 (2010).
  11. Pedroso, F. E., et al. Inflammation, organomegaly, and muscle wasting despite hyperphagia in a mouse model of burn cachexia. Journal of Cachexia, Sarcopenia and Muscle. 3, 199-211 (2012).
  12. Soda, K., Kawakami, M., Kashii, A., Miyata, M. Manifestations of cancer cachexia induced by colon 26 adenocarcinoma are not fully ascribable to interleukin-6. International journal of cancer. 62, 332-336 (1995).
  13. Costelli, P., et al. IGF-1 is downregulated in experimental cancer cachexia. American journal of physiology. Regulatory, Integrative and Comparative Physiology. 291, R674-R683 (2006).
  14. Palus, S., Akashi, Y., von Haehling, S., Anker, S. D., Springer, J. The influence of age and sex on disease development in a novel animal model of cardiac cachexia. International Journal of Cardiology. 133, 388-393 (2009).
  15. Norman, K., et al. Effect of sexual dimorphism on muscle strength in cachexia. Journal of Cachexia, Sarcopenia and Muscle. 3, 111-116 (2012).
  16. Stephens, N. A., et al. Sexual dimorphism modulates the impact of cancer cachexia on lower limb muscle mass and function. Clinical Nutrition. 31, 499-505 (2012).
  17. Cosper, P. F., Leinwand, L. A. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Krebsforschung. 71, 1710-1720 (2011).
  18. Ullman-Cullere, M. H., Foltz, C. J. Body condition scoring: a rapid and accurate method for assessing health status in mice. Laboratory Animal Science. 49, 319-323 (1999).
  19. Bonetto, A., Andersson, D. C., Waning, D. L. Assessment of muscle mass and strength in mice. Bonekey Rep. 4, 732 (2015).
  20. Minamoto, V. B., et al. Increased efficacy and decreased systemic-effects of botulinum toxin A injection after active or passive muscle manipulation. Dev Med Child Neurol. 49, 907-914 (2007).
  21. Murphy, K., Lynch, G. Update on emerging drugs for cancer cachexia. Expert Opin Emerg Drugs. 14, 619-632 (2009).
  22. Seto, D. N., Kandarian, S. C., Jackman, R. W. A Key Role for Leukemia Inhibitory Factor in C26 Cancer Cachexia. The Journal of Biological Chemistry. 290, 19976-19986 (2015).
  23. Judge, S. M., et al. Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia. BMC Cancer. 14, 997 (2014).
  24. Kliewer, K. L., et al. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice. Cancer Biol Ther. 16, 886-897 (2015).
  25. Aversa, Z., et al. Changes in myostatin signaling in non-weight-losing cancer patients. Ann Surg Oncol. 19, 1350-1356 (2012).
  26. Bonetto, A., et al. Early changes of muscle insulin-like growth factor-1 and myostatin gene expression in gastric cancer patients. Muscle Nerve. 48, 387-392 (2013).
  27. Lazarus, D. D., et al. A new model of cancer cachexia: contribution of the ubiquitin-proteasome pathway. The American Journal of Physiology. 277, E332-E341 (1999).
  28. al-Majid, S., McCarthy, D. O. Resistance exercise training attenuates wasting of the extensor digitorum longus muscle in mice bearing the colon-26 adenocarcinoma. Biol Res Nurs. 2, 155-166 (2001).
  29. Bonetto, A., et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. American journal of physiology. Endocrinology and metabolism 303. 303, E410-E421 (2012).
  30. Samuels, S. E., et al. Liver protein synthesis stays elevated after chemotherapy in tumour-bearing mice. Cancer Lett. 239, 78-83 (2006).
  31. Cornwell, E. W., Mirbod, A., Wu, C. L., Kandarian, S. C., Jackman, R. W. C26 cancer-induced muscle wasting is IKKbeta-dependent and NF-kappaB-independent. PloS One. 9, e87776 (2014).
  32. Penna, F., et al. Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition. PloS One. 5, e13604 (2010).
check_url/de/54893?article_type=t

Play Video

Diesen Artikel zitieren
Bonetto, A., Rupert, J. E., Barreto, R., Zimmers, T. A. The Colon-26 Carcinoma Tumor-bearing Mouse as a Model for the Study of Cancer Cachexia. J. Vis. Exp. (117), e54893, doi:10.3791/54893 (2016).

View Video