Summary

生活多巴胺能神经元可靠的鉴定中脑培养使用RNA测序和TH-启动子驱动的EGFP表达

Published: February 10, 2017
doi:

Summary

帕金森病(PD),黑质(SNC)多巴胺能神经元退化,导致运动功能障碍。此处我们报告从表达eGFP的小鼠通过酪氨酸羟化酶(TH)的启动子序列驱动的培养腹侧中脑神经元,从培养收获个别荧光神经元,并使用RNA-SEQ测量它们转录的协议。

Abstract

在帕金森氏病(PD)有贯穿了在黑质致密多巴胺能神经元的显着退化脑中广泛的神经元丧失,导致运动徐缓,强直和震颤。在初级腹侧中脑(VM)的培养活多巴胺能神经元的使用荧光标记的识别提供了一种替代的方法来研究这些神经元的选择性脆弱而不依靠固定的细胞的免疫染色。在这里,我们分离,解离,并培养小鼠VM神经3周。然后,我们确定在使用的eGFP的荧光(由酪氨酸羟化酶(TH)启动子驱动)的培养物的多巴胺能神经元。单个神经元被收集到用玻璃微离心管。接下来,我们裂解收获的细胞,并进行cDNA合成和转座子介导的“tagmentation”,以产生单细胞RNA测序文库1,2,屁股=“外部参照”> 3,4,5。传递一个质量控制检查后,单细胞库进行测序和随后的分析进行测量的基因表达。我们报告个人多巴胺和中脑培养物中分离GABA能神经元转录组的结果。我们报告,收获和测序,该活的TH-eGFP的细胞的100%的多巴胺能神经元。这些技术将在神经科学和分子生物学广泛的应用。

Introduction

帕金森氏病(PD)是一种不可治愈的,年龄相关的神经变性疾病。此相对常见病症的起因仍然知之甚少。有广泛的神经元损失整个大脑,用在黑质(SNC)多巴胺能神经元的显着的神经元变性,导致运动徐缓,强直,震颤的诊断的临床特征。

含黑质多巴胺能神经元主要混合培养是帕金森氏病尤为重要。腹侧被盖区(VTA)多巴胺能神经元有牵连的奖励和上瘾。腹侧(VM)的主要混合胚胎培养同时包含黑质致密部和腹侧被盖区多巴胺(DA)神经元和GABA能神经元。 VM初级培养物可以是用于神经保护测定法有用并阐明多巴胺能神经元的选择性脆弱性。有识别基于形态学的培养多巴胺能细胞没有可靠的方法。他再我们开发技术来识别和收获单多巴胺能神经元,并构建单细胞,高产出的RNA测序文库。

我们报告单多巴胺和中脑培养物中分离GABA能神经元代表RNA转录组数据。该协议可以用于神经保护,神经变性,和药理学试验来研究在DA / GABA转录各种处理的影响。由于多巴胺能神经元代表主虚拟机的文化表达的神经元的一小部分,可靠地识别活的文化这些神经元的能力将实现单细胞研究的增强范围。这些新颖的技术将有助于理解发生在细胞水平上的机制的进展,并且可以具有应用在神经科学和分子生物学领域的其它地方。

Protocol

注:所有实验均按照护理和使用美国国立卫生研究院和协议提供动物的指导方针进行了机构动物护理和使用委员会在加州技术研究所的批准。 1.从小鼠胚胎脑多巴胺能细胞培养的推导解决方案和培养基抗坏血酸储备溶液的制备称出352毫克的抗坏血酸。添加无菌H 2 O操作20 mL的最终总体积。在37℃水浴地方溶解。通过0.2微米的注射器尖端和储存在-20°C …

Representative Results

此处我们报告来自小鼠表达EGFP由酪氨酸羟化酶启动子序列驱动的培养腹侧中脑神经元,从培养收获个别荧光神经元,并使用RNA-SEQ( 图1)测量它们的RNA转录的协议。该数据表明,收获和测序的TH-eGFP的阳性细胞100%为多巴胺能神经元,是根据以下三个DA相关基因的转录物的存在下,TH,多巴脱羧酶(DDC)和多巴胺转运DAT (SLC6A3)。所有TH-EGFP阳性细胞通过RNA-SEQ?…

Discussion

在这里,我们分离使用荧光标记,然后研究以单细胞的RNA-SEQ每个小区由一个异质群体单细胞。我们报告,我们收获并测序活的TH-eGFP的细胞100%的确多巴胺能神经元,是根据以下三个DA相关基因的转录,TH,DDC和SLC6A3的存在。所有TH-EGFP阳性细胞通过RNA-SEQ的评估表达这三个基因。这是一致的与电生理研究显示,每TH-EGFP细胞也呈现出与多巴胺能神经元8,9相?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

This work was supported by grants from the U.S. National Institutes of Health (DA017279, AG033954, DA037743), the Michael J. Fox Foundation, and the Caltech Innovation Initiative funding the Millard and Muriel Jacobs Genetics and Genomics Laboratory at the California Institute of Technology. We thank Brian Williams for optimising the RNA-Seq library protocol and for providing assistance. We thank Henry Amrhein for computational training. We thank Barbara J. Wold for the use of her equipment and laboratory space. We thank Igor Antoshechkin for library sequencing, and for facility management.

Materials

Papain Worthington Biochemical Corporation  LS003126
Hanks’ Balanced Salt Solution (HBSS), 1X Gibco  14175-095
Donor Equine Serum Thermo Scientific  SH30074.03
Bovine Serum Albumin (BSA) Sigma  A7030-50G
Medium: Neurobasal medium Gibco  21103-049
Culture media that contains a stabilized form of L-glutamine, L-alanyl-L-glutamine: GlutaMAX Gibco  35050-061 0.5 mM final concentration.
L-Ascorbic acid Sigma  A7506
B27 Gibco  17504-044 50 X stock solution, 1 X final concentration.
35 mm glass bottom dishes MatTek   P35GC-1.5-10-C
Poly-L-Ornithine Sigma  P4957
Laminin Sigma  L2020 Stored at -20°C in 20 µL aliquots
Deoxyribonuclease I (DNase) Sigma  DN25
Blue pipette tips Sorenson Bioscience,  Inc. 10130
P1000
10 mm shallow Petri dish VWR  25384-324
37°C Water bath
37°C, 5% humidity incubator
16% paraformaldehyde (PFA) Electron Microscopy Sciences  15710
Triton X-100 Sigma  X100-500ML
Donkey serum Equitech  SD-0100HI 100% stock solution, 1% final concentration.
Standard Pattern surgical scissors Fine Science Tools 14000-14
Forceps – 2×3 teeth Fine Science Tools 11022-14
Forceps – Dumont #55 Fine Science Tools 11295-51
Forceps – Dumont #5 Fine Science Tools 11252-23
10X PBS, pH 7.4 Gibco  70011-044
Dulbecco's Phosphate Buffered solution (DPBS) 1X Gibco 14190-144 500 ml 
21 guage needle  BD PrecisionGlide Needle 305167 100 needles
Micropipette puller Sutter Instrument. model P-87
Micromanipulator  Sutter Instrument  MP-285
Sequencing Kit: SMARTer Ultra Low RNA Kit for Illumina Sequencing Clontech 634936 100rnxs,incl Advantage2PCR Kit
oligonucleotide (12 µM): SMARTer IIA oligonucleotide (12 µM) From the SMARTer Kit 
Reverse transcriptase (100 units) SMARTcribe reverse transcriptase From the SMARTer Kit 
Primer 1 3’ CDSIIa primer  From the SMARTer Kit
Primer 2 IS PCR primer From the SMARTer Kit
50X 2 polymerase mix 50X Advantage 2 polymerase mix From the SMARTer Kit
10X PCR buffer 10X Advantage 2 PCR buffer From the SMARTer Kit
RNA Spikes ThermoFisher 4456740
PCR cooler rack IsoFreeze PCR cooler rack.
DNA Sample Preparation Kit  (Illumina/Nextera) Nexter FC-121-1030 24 Samples
PCR master mix Nextera PCR master mix (NPM) From the Nextera Kit 
PCR primer cocktail (PPC)  Nextera PCR primer cocktail (PPC)  From the Nextera Kit
Fluorometer The Qubit ThermoFisher Q33216
HS DNA BioAnalyzer kit Agilent 5067-4626 110rxns
Electrophoresis system  Agilent 2100 Bioanalyzer. G2938C
Magnetic beads: Agencourt AMPure  Beckman Coulter A63880 5ml
RNAse wipe: RNAse Zap wipes Ambion AM9786 Size 100 Sheets
Qubit ds HS Assay Kit Molecular probes  Q32854 500 assays
Gel extraction kit: Qiaquick Gel Extraction Kit Qiagen  28704
Glass capillary tubing (Kimax-51, 1.5–1.8 mm o.d.)
Microforge Narishige (or equivalent) 
Sequencer Illumina HiSeq instrument
GENSAT tyrosine hydroxylase-eGFP mouse strain  MMRRC stock number: 000292-UNC Stock Tg(Th-EGFP)DJ76Gsat/Mutant Mouse Regional Research Center

Referenzen

  1. Henley, B. M., et al. Transcriptional regulation by nicotine in dopaminergic neurons. Biochem Pharmacol. 86 (8), 1074-1083 (2013).
  2. Marinov, G. K., et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24 (3), 496-510 (2014).
  3. Kim, D. H., et al. Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell. 16 (1), 88-101 (2015).
  4. Ramskold, D., et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 30 (8), 777-782 (2012).
  5. Gertz, J., et al. Transposase mediated construction of RNA-seq libraries. Genome Res. 22 (1), 134-141 (2012).
  6. Morris, J., Singh, J. M., Eberwine, J. H. Transcriptome analysis of single cells. J Vis Exp. (50), (2011).
  7. Trapnell, C., et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. , 562-578 (2012).
  8. Srinivasan, R., et al. Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons. The Journal of Neuroscience. 36 (1), 65-79 (2016).
  9. Henderson, B. J., et al. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward. J Neurosci. 36 (10), 2957-2974 (2016).
  10. Gong, S., et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 425 (6961), 917-925 (2003).
  11. Kim, J., Henley, B. M., Kim, C. H., Lester, H. A., Yang, C. Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy. Biomed Opt Express. (8), 3097-3110 (2016).
  12. Lammel, S., et al. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron. 85 (2), 429-438 (2015).
  13. Wang, Z., Gerstein, M., Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 10 (1), 57-63 (2009).
  14. Dryanovski, D. I., et al. Calcium entry and alpha-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci. 33 (24), 10154-10164 (2013).
  15. Kimm, T., Khaliq, Z. M., Bean, B. P. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons. J Neurosci. 35 (50), 16404-16417 (2015).
check_url/de/54981?article_type=t

Play Video

Diesen Artikel zitieren
Henley, B. M., Cohen, B. N., Kim, C. H., Gold, H. D., Srinivasan, R., McKinney, S., Deshpande, P., Lester, H. A. Reliable Identification of Living Dopaminergic Neurons in Midbrain Cultures Using RNA Sequencing and TH-promoter-driven eGFP Expression. J. Vis. Exp. (120), e54981, doi:10.3791/54981 (2017).

View Video