Summary

抗菌蓝光治疗的体内研究的多药耐药鲍曼不动杆菌感染烧伤利用生物发光成像

Published: April 28, 2017
doi:

Summary

Infections caused by multidrug-resistant (MDR) bacterial strains have emerged as a serious threat to public health, necessitating the development of alternative therapeutics. We present a protocol to evaluate the effectiveness of antimicrobial blue light (aBL) therapy for MDR Acinetobacter baumannii infections in mouse burns by using bioluminescence imaging.

Abstract

烧伤感染仍是发病率和死亡率的重要原因。多药耐药(MDR)细菌的日益兴起,导致了传统抗生素治疗的频繁故障。替代治疗迫切需要解决MDR细菌。

一个创新的非抗生素的办法,抗菌蓝光(ABL),已经显示出对MDR感染的有前途的有效性。 ABL的作用机制尚不清楚。它通常假设在细菌中天然存在的内源性光敏发色团( 例如 ,无铁卟啉,黄素, )由ABL,这反过来又产生细胞毒性活性氧类(ROS)通过光化学方法激发。

不同于另一基于光的抗菌方法中,抗微生物光动力学疗法(APDT),ABL疗法不需要外源photosensitiz的参与呃。所有它需要生效是蓝色光的照射;因此,它是简单和廉价的。 ABL的受体是在细菌中内源性细胞的光敏剂,而不是DNA。因此,ABL被认为是少得多基因毒性对宿主细胞不是紫外线C(UVC)照射,这直接导致在宿主细胞中的DNA损伤。

在本文中,我们提出了一个协议,以评估ABL治疗的烧伤损伤的小鼠模型MDR 鲍曼不动杆菌感染的效果。通过使用生物发光的工程菌株,我们能够无创监测感染的实时程度在活的动物。这种技术也用于监测动物感染的空间分布的有效工具。

Introduction

烧伤感染,这是因为皮肤的热损伤的频传,继续成为发病率和死亡率1的一个重要原因。烧伤感染的管理已经通过多药耐药性(MDR)的细菌菌株2的增加出现了进一步的损害,由于大量使用抗生素。一个重要的MDR革兰阴性菌是鲍曼不动杆菌 ,这是已知的与最近的战斗创伤相关联且几乎所有可用的抗生素耐药3。生物膜的损伤灶的存在已经报告了4,5,被认为是加剧耐受抗生素和宿主防御6,7,引起持续感染的8,9。因此,有一种压力机,加工摹需要替代治疗的发展。在最近公布的国家战略打击抗生素耐药细菌 ,替代疗法,抗生素的发展已注意到由美国10政府的作用。

光为基础的抗菌剂的方法,由名称所指示的,需要与或不与其它药剂的光照射。这些方法包括抗微生物光动力学疗法(APDT),紫外线C(UVC)照射,和抗微生物蓝光(ABL)。在以前的研究中,他们已经杀死MDR菌株11,12,13显示出可喜的成效。在这三种光为基础的方法,ABL已吸引近几年越来越多的关注,由于无需使用光敏剂14的其固有的抗菌性能。在COMPARISON到APDT,ABL仅涉及使用光的,而需要APDT光和光敏剂的组合。因此,ABL是简单且廉价的14。相比于UVC,ABL被认为是细胞毒性和遗传毒性对宿主细胞15要少得多。

此协议的目的是研究ABL对小鼠模型引起MDR 鲍曼不动杆菌烧伤感染的治疗功效。我们用生物发光致病细菌培养烧伤感染,允许的实时细菌负荷的无创监测的新的小鼠模型。相比,体液/组织提取和随后的镀敷和菌落计数16传统的方法,这种技术提供了精确的结果。组织取样的过程中可能引入的实验误差的另一个来源。由于细菌的发光强度成线性比例的受文者积水细菌CFU 17,我们可以直接测量光照射一定剂量后的细菌的存活。通过监测在活的动物中实时接收光处理中的细菌负荷,的细菌杀死动力学可使用小鼠的显著减少数量来表征。

Protocol

1.细菌培养的制备添加7.5毫升脑心浸液(BHI)培养基中至50mL离心管中。种子鲍曼不动杆菌细胞在BHI培养基,然后孵育鲍曼不动杆菌培养在轨道培养箱(37℃)18小时。 离心细胞的培养物在3,500×g下5分钟,除去上清液,并在磷酸盐缓冲盐水(PBS)洗涤小球。 重悬在新鲜的PBS中的细菌颗粒和彻底吸管的悬浮液。 收集100μL的细菌悬浮液,并使用新鲜的PBS作1:10稀…

Representative Results

我们使用的是鲍曼不动杆菌菌株是MDR临床分离株,如先前12,17报道。该菌株是由luxCDABE歌剧11的转染由生物发光。 图1A示出了从代表性小鼠连续细菌发光图像烧伤感染5×10 6 鲍曼不动杆菌 ,并在细菌接种后24个小时暴露于单个ABL曝光。有代表性的小鼠皮肤的组织切片的革?…

Discussion

ABL是用于治疗感染的新方法。由于其作用机制不同于化疗的完全不同,它更是一个理疗。介导抗微生物效果的药剂是蓝色光照射(400-470纳米)。随着蓝光LED的发展,我们获得了进入的MDR感染的有效和简单的基于光抗菌方法。

在这个协议中,我们描述了造成MDR, 鲍曼不动杆菌的生物发光应变烧伤感染的小鼠模型的发展。与使用生物发光的细菌,感染的程度可以是非侵?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

This work was supported in part by the Center for Integration of Medicine and Innovative Technology (CIMIT) under the U.S. Army Medical Research Acquisition Activity Cooperative Agreement (CIMIT No. 14-1894 to TD) and the National Institutes of Health (1R21AI109172 to TD). YW was supported by an ASLMS Student Research Grant (BS.S02.15). We are grateful to Tayyaba Hasan, PhD at the Wellman Center for her co-mentorship for YW.

Materials

IVIS  PerkinElmer Inc, Waltham, MA IVIS Lumina Series III Pre-clinical in vivo imaging
Light-emitting diode LED VieLight Inc, Toronto, Canada  415 nm Light source for illumination
Power/energy meter Thorlabs, Inc., Newton, NJ PM100D Light irradiance detector
Mouse  Charles River Laboratories, Wilmington, MA BALB/c 7-8 weeks age, 17-19 g weight
Acinetobacter baumannii  Brooke Army Medical Center, Fort Sam Houston, TX Clinical isolate Engineered luminescent strain
Insulin Syringes Fisher Scientific 14-826-79 BD Lo-Dose U-100 Insulin Syringes for injection
Sodium Chloride Fisher Scientific 721016 0.9% Sodium Chloride
Phosphate Buffered Saline, 1X Solution Fisher Scientific BP24384  A standard phosphate buffer used in many biomolecular procedures
Brain Heart Infusion Fisher Scientific B11059 Bacterial culture medium
Falcon 15mL Conical Centrifuge Tubes Fisher Scientific 14-959-70C For bacterial suspension centrifuge
Benchtop Incubated Orbital Shakers Laboratory Supply Network, Inc, Atkinson, NH  Incu-Shaker Mini For culturing of bacteria
Inoculating Loops Fisher Scientific 22-363-605   For smearing bacterial inoclum on burn surface of mice
Fisher Scientific Redi-Tip Pipet Tips, 1-200µL Fisher Scientific 02-707-502 Pipet Tips
Thermo Scientific Sorvall Legend X1 Centrifuge Fisher Scientific 75-004-220 For bacterial suspension seperation
Brass Block Small Parts, Inc., Miami, FL 10 mm by 10 mm  For creation of burns in mice
Extreme Dragon PBI/Kevlar High-Heat Gloves Superior Glove Works Ltd, Cheektowaga, NY PBI83514  Heat Resistant Gloves
Greiner dishes Sigma-Aldrich Co. LLC P5112-740EA 35 mm ×10 mm
Corning Digital Hot Plate Cole-Parmer Instrument Company, LLC UX-84301-65 10" x 10", 220 VAC, for boiling water 
Mouse/Rat Thin Line Water Heated Surgical Bed E-Z Systems EZ-211 Prevents heat loss and hypothermia during surgery

Referenzen

  1. Gibran, N. S. Summary of the 2012 ABA Burn Quality Consensus conference. J Burn Care Res. 34 (4), 361-385 (2013).
  2. Sommer, R., Joachim, I., Wagner, S., Titz, A. New approaches to control infections: anti-biofilm strategies against gram-negative bacteria. Chimia (Aarau). 67 (4), 286-290 (2013).
  3. Peleg, A. Y., Seifert, H., Paterson, D. L. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 21 (3), 538-582 (2008).
  4. Uppu, D. S. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection. Biomaterials. 74, 131-143 (2016).
  5. Schaber, J. A. Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun. 75 (8), 3715-3721 (2007).
  6. Hoiby, N., Bjarnsholt, T., Givskov, M., Molin, S., Ciofu, O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 35 (4), 322-332 (2010).
  7. Lebeaux, D., Ghigo, J. M., Beloin, C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 78 (3), 510-543 (2014).
  8. Akers, K. S. Biofilms and persistent wound infections in United States military trauma patients: a case-control analysis. BMC Infect Dis. 14, 190 (2014).
  9. Burmolle, M., et al. Biofilms in chronic infections – a matter of opportunity – monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol. 59 (3), 324-336 (2010).
  10. . National strategy on combating antibiotic-resistant bacteria Available from: https://www.whitehouse.gov/sites/default/files/docs/carb_national_strategy.pdf (2014)
  11. Dai, T. Photodynamic therapy for Acinetobacter baumannii burn infections in mice. Antimicrob Agents Chemother. 53 (9), 3929-3934 (2009).
  12. Zhang, Y. Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections. J Infect Dis. 209 (12), 1963-1971 (2014).
  13. Dai, T., et al. Ultraviolet C light for Acinetobacter baumannii wound infections in mice: potential use for battlefield wound decontamination?. J Trauma Acute Care Surg. 73 (3), 661-667 (2012).
  14. Dai, T. Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?. Drug Resist Updat. 15 (4), 223-236 (2012).
  15. Yin, R. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr Opin Pharmacol. 13 (5), 731-762 (2013).
  16. Haisma, E. M. Inflammatory and antimicrobial responses to methicillin-resistant Staphylococcus aureus in an in vitro wound infection model. PLoS One. 8 (12), e82800 (2013).
  17. Wang, Y. Antimicrobial Blue Light Inactivation of Gram-Negative Pathogens in Biofilms: In Vitro and In Vivo Studies. J Infect Dis. 213 (9), 1380-1387 (2016).
  18. Chen, D., Shen, Y., Huang, Z., Li, B., Xie, S. Light-Emitting Diode-Based Illumination System for In Vitro Photodynamic Therapy. Int J Photoenergy. 2012 (2), (2012).
  19. Demidova, T. N., Gad, F., Zahra, T., Francis, K. P., Hamblin, M. R. Monitoring photodynamic therapy of localized infections by bioluminescence imaging of genetically engineered bacteria. J Photochem Photobiol B. 81 (1), 15-25 (2005).
  20. Hamblin, M. R., Zahra, T., Contag, C. H., McManus, A. T., Hasan, T. Optical monitoring and treatment of potentially lethal wound infections in vivo. J Infect Dis. 187 (11), 1717-1725 (2003).
  21. Rowan, M. P. Burn wound healing and treatment: review and advancements. Critical Care. 19, 243 (2015).
  22. Marx, D. E., Barillo, D. J. Silver in medicine: The basic science. Burns. 40 (Supplement 1), S9-S18 (2014).
  23. Heyneman, A., Hoeksema, H., Vandekerckhove, D., Pirayesh, A., Monstrey, S. The role of silver sulphadiazine in the conservative treatment of partial thickness burn wounds: A systematic review. Burns. 42 (7), 1377-1386 (2016).
  24. Roberts, J. A. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 14 (6), 498-509 (2014).
  25. Dai, T. Blue light eliminates community-acquired methicillin-resistant Staphylococcus aureus in infected mouse skin abrasions. Photomed Laser Surg. 31 (11), 531-538 (2013).
  26. Uppu, D. S. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection. Biomaterials. 74, 131-143 (2016).
  27. Donlan, R. M., Costerton, J. W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 15 (2), 167-193 (2002).
  28. Olsen, I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. , (2015).
  29. Song, H. H. Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens. J Periodontal Implant Sci. 43 (2), 72-78 (2013).
  30. Rosa, L. P., da Silva, F. C., Viana, M. S., Meira, G. A. In vitro effectiveness of 455-nm blue LED to reduce the load of Staphylococcus aureus and Candida albicans biofilms in compact bone tissue. Lasers Med Sci. 31 (1), 27-32 (2015).
  31. Guffey, J. S., Wilborn, J. In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomed Laser Surg. 24 (6), 684-688 (2006).
  32. Enwemeka, C. S., Williams, D., Enwemeka, S. K., Hollosi, S., Yens, D. Blue 470-nm light kills methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Photomed Laser Surg. 27 (2), 221-226 (2009).
  33. Bumah, V. V., Masson-Meyers, D. S., Cashin, S. E., Enwemeka, C. S. Wavelength and bacterial density influence the bactericidal effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA). Photomed Laser Surg. 31 (11), 547-553 (2013).
  34. Maclean, M., MacGregor, S. J., Anderson, J. G., Woolsey, G. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol. 75 (7), 1932-1937 (2009).
  35. Kim, M. Optical lens-microneedle array for percutaneous light delivery. Biomedical Optics Express. 7 (1o), 4220-4227 (2016).
check_url/de/54997?article_type=t

Play Video

Diesen Artikel zitieren
Wang, Y., Harrington, O. D., Wang, Y., Murray, C. K., Hamblin, M. R., Dai, T. In Vivo Investigation of Antimicrobial Blue Light Therapy for Multidrug-resistant Acinetobacter baumannii Burn Infections Using Bioluminescence Imaging. J. Vis. Exp. (122), e54997, doi:10.3791/54997 (2017).

View Video