Summary

钢的出气率的测量

Published: December 13, 2016
doi:

Summary

A protocol for the measurement of outgassing rates of hydrogen from ordinary steel vacuum chambers using the rate-of-pressure rise method is presented.

Abstract

钢被常用材料在真空系统的制造,因为它们的良好的机械,腐蚀和真空特性。各种钢材满足低放气的高或超高真空应用所需的标准。然而,给定的材料可呈现取决于其制造过程中或在制造过程中涉及的各种前处理过程中不同出气率。因此,除气率的测量是对一个特定的真空应用高度期望的。出于这个原因,速率的压力上升(ROR)方法通常用于测量氢的烘烤后的释气。在这篇文章中,提供了设计和涉及回报率方法的实验方案的执行的详细描述。 RoR的方法使用纺纱转子计,以减少从脱气或真空计的泵送作用茎错误。两个普通钢的出气率(不锈钢和MILD钢)进行测定。该测量之前和钢的热预处理之后进行。进行钢的热预处理,以减少除气。除气极低的利率(10的顺序 11帕米3 1米 2)可以使用相对小样本进行常规检测。

Introduction

钢在建筑经常使用,因为其良好的机械性能。某些钢(亚铁钢,特别)是优选的材料包括真空应用。取决于类型和等级,这些钢具有足够低的出气率为高真空必不可少(HV,10 7 <P <10 5帕)或超高真空(UHV,10 -10 <P <10 7 Pa)的系统。此外,大量的研究已经朝着特殊的预处理程序,减少气体释放1-3的发展进行的。预处理措施旨在最小化泵送投资或改善真空从HV到UHV或从UHV极端高真空(P <10 10帕)。

虽然许多实际的方法已被提出,以减少除气鼠亚铁钢即,最近的方法主要集中在减少,以获得较低的放气速率所需要的时间和温度。在350°C-450°热治疗C,而不是在真空800℃,950℃烧制,是这种方法的一个很好的例子。 1,4,5此外,选择理想的材料为特定真空的应用是至关重要的;例如,选择的铁素体材料具有非常低的放气速率为在磁场屏蔽使用。 6,7

在这样的调查中,放气速率的精确测量对于候选材料的筛选或验证的各种预处理程序的有效性的一个先决条件。 8,9-用于脱气测量中的最常见的实验技术是可以通过和速率的压力上升的方法。 10日前,各种实验已经进行测量基础上,采用RoR的方法旋氢出气率宁转子计(SRG)。 1,11-13使用SRG的回报率的方法是非常适合测量非常低的氢出气率,往往限制了最低压力在由钢制成的真空系统可以实现的。这是因为,SRG具有可忽略泵送或除气动作。另外,SRG还具有在高真空和超高真空范围内具有优异的精度和良好的线性。 14

鉴于上RoR的实验已发表的文献中是有限的,这是值得来描述的实验细节,开发的方法的更深入的了解。在这个视频文章中,我们详细描述了建立实验的过程,并提供了详细的说明执行使用RoR的方法放气测量。为了证明该方法的功效,之前和预热处理后测定两种常用的钢(不锈钢304和软钢S20C)的出气率降低氢outgassin摹率。前和治疗后的值进行比较。使用相当简单的设置典型的实验结果呈现演示评价低氢脱气率优化的方法的功效。

Protocol

注意:请遵守所有相关的安全做法,同时装配设备和样品室。请佩戴个人防护设备(防护眼镜,手套,安全鞋等 )。 1.样品真空室制作 设计和制造的真空室的 准备和提交设计图纸到商业供应商或内部机械加工车间制造样品真空室。设计图纸制成S20C钢的真空室的代表性例子示于图1。在这个实验中所设计的腔室是非常基本的,并?…

Representative Results

正如预期的,烘烤后的残余气体主要是氢。 7使用SRG测得的压力上升是在相当长的时间周期( 图5)是线性的。因此,再吸附效果可能会微不足道和用于本研究中测试的钢固有放气速率(Q)可使用的RoR方法进行评价。使用线性最小二乘拟合方法10所测得的压力上升数据进行了分析。的样品室的出气率从斜率( 图5)确定了。 <…

Discussion

为出气率的测量许多方法已在文献中报道。实验方法包括吞吐量,电导调制,双路径,回报率,和这些方法的变体。然而,没有一种方法适合获得必要的放气数据。 10使用SRG的回报率的方法,但是,成为首选低释气材料的测定方法。 11-13 SRG 17通常被用作在高真空系统,而不错误泵送或除气作用的二级标准。使用SRG RoR的方法特别适合于烘烤后测量氢气脱气室温。相比之下?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

This work was supported jointly by the Converging Research Center Program through the Ministry of Science, ICT and Future Planning, Korea (NRF-2014M3C1A8048817) and R&D Convergence Program of NST (National Research Council of Science and Technology) of Republic of Korea (CAP-14-3-KRISS).

Materials

Sample chamber
Stainless steel, 304 POSCO      (www.posco.co.kr)
Mild steel, D3752 Xiangtan Iron&Steel co.,LTD (http://www.hnxg.com)
Mild steel, D3752 SeAh Besteel (www.seahbesteel.co.kr)
Name Company Catalog Number Comments
Cleaning
Cleaning bath Samill IDS Ultrasonic cleaning, heating, timer, concentration control 
Acetone Samchun Chemical (www.samchun.com) A1759 HPLC GRADE (99.7%)
Tekusolv NCH Co.        (www.nch.com) 0368-0058J Solvents
BN cleaner Henkel surface technologies (na.henkel-adhesives.com) 6610263775 Akkaline, pH 13
Ethanol Fisher Scientific (www.fishersci.com) A995-4 HPLC Reagent(99.9%)
Deionized water (Electro deionizer SYSTEM) A.T.A        (www.atagroup.co) EDI SYSTEM
Liquid N2 gas Hanyoung (www.gasmaster.co.kr) B/T 176 L LN2 dewar, purity 99.999%
Name Company Catalog Number Comments
Welding
Tungsten Inert Gas wedling machine Thermal Arc (www.victortechnologies.com/thermalarc) 400GTSW Ar gas prefllow&postflow 8 liter/min, backflow 5 liter/min
turning jig Vactron    (www.vactron.co.kr) Made to order Made to order
Ar gas Lindekorea (www.lindekorea.com) Purity 99.999%
Name Company Catalog Number Comments
Leak test
Leak detector Adixen     (www.adixen.fr/en/) ASM380 Pumping Speed(air): 9.7 l/s
He gas Lindekorea (www.lindekorea.com) Purity 99.999%
Name Company Catalog Number Comments
Vacuum equipment
Spinning rotor gauge  MKS Instruments (www.mks.com) SRG-3 Controller, head, and thimble set
Industrial level meter MKS Instruments (www.mks.com) SRG-3 For SRG assemble ± 1˚
Oscilloscope Tektronix               (www.tek.com) TDS2012B
Residulal gas analyser Balzers QMA200 m/e 0-100 
TMP(HiPace 80) Pfeiffer Vacuum (www.pfeiffer-vacuum.com) PMP03941 Pumping Speed(N2): 67 l/s
Scroll pump Anest Iwata        (www.anest-iwata.co.jp) ISP 90 Pumping Speed(Air): 1.8 l/s
All-metall easy close angle valve(CF35) VAT Inc.  (www.vatvalve.com) 54032-GE02-0002 Rotatable flange
Angle valve(KF25) MDC Vacuum Inc. (www.mdcvacuum.com) KAV-100
Five-Way Crosses     MDC  Made to order CF4-1/2 Spool-rotatable 1-way to CF2-3/4 Nipple 3ea, Vacuum degassed at 400℃ for 3 days
Reducing Tees  MDC Made to order CF4-1/2 Flange to CF2-3/4 Tees(Half flange), Vacuum degassed at 400℃ for 3 days
Name Company Catalog Number Comments
Temperature control 
Chiller JEIO Tech   (www.jeiotech.com) RW-2025G
Cooling line LS Metal     (www.lsmetal.biz) C1100 Level Wound Coil, Diameter 10mm
Heater controllers HMT Made to order Bakeout program controller
Electrical heater tapes Brisk heat (www.briskheat.com) BIH101080L
Thermocouple(K type) miraesensor (www.miraesensor.com) MR-2290
Handheld multimeter Saehan     (www.saehan.co.kr) 3234
Data recorder(Temp.) Yokogawa (www.yokogawa.com) GP10-1E1F-UC10

Referenzen

  1. Mamun, M. A., Elmustafa, A. A., Stutzman, M. L., Adderley, P. A., Poelker, M. Effect of heat treatments and coatings on the outgassing rate of stainless steel chambers. J. Vac. Sci. Technol. A. 32 (2), 021604 (2014).
  2. Sasaki, Y. T. Reducing SS 304/316 hydrogen outgassing to 2×10−15 torr l /cm2 s. J. Vac. Sci. Technol. A. 25 (4), 1309-1311 (2007).
  3. He, P., Hseuh, H. C., Mapes, M., Todd, R., Weiss, D., Wilson, D. Outgassing properties of the spallation neutron source ring vacuum chambers coated with titanium nitride. J. Vac. Sci. Technol. A. 22 (3), 705-710 (2004).
  4. Bernardini, M., et al. Air bake-out to reduce hydrogen outgassing from stainless steel. J. Vac. Sci. Technol. A. 16 (1), 188-193 (1998).
  5. Park, C., Chung, S., Liu, X., Li, Y. Reduction in hydrogen outgassing from stainless steels by a medium-temperature heat treatment. J. Vac. Sci. Technol. A. 26 (5), 1166-1171 (2008).
  6. Kamiya, J., et al. Vacuum chamber made of soft magnetic material with high Permeability. Vacuum. 98, 12-17 (2013).
  7. Park, C., Ha, T., Cho, B. Thermal outgassing rates of low-carbon steels. J. Vac. Sci. Technol. A. 34 (2), 021601 (2016).
  8. Battes, K., Day, C., Hauer, V. Outgassing rate measurements of stainless steel and polymers using the difference Method. J. Vac. Sci. Technol. A. 33 (2), 021603 (2015).
  9. Jousten, K., Putzke, S., Buthig, J. Partial pressure measurement standard for characterizing partial pressure analyzers and measuring outgassing rates. J. Vac. Sci. Technol. A. 33 (6), 061603 (2015).
  10. Redhead, P. A. Recommended practices for measuring and reporting outgassing data. J. Vac. Sci. Technol. A. 20 (5), 1667-1675 (2002).
  11. Jousten, K. Calibration of total pressure gauges in the UHV and XHV regions. J. Vac. Soc. Jpn. 37 (9), 678-685 (1994).
  12. Nemanic, V., Setina, J. Outgassing in thin wall stainless steel cells. J. Vac. Sci. Technol. A. 17 (3), 1040-1046 (1999).
  13. Nemanic, V., Setina, J. A study of thermal treatment procedures to reduce hydrogen outgassing rate in thin wall stainless steel cells. Vacuum. 53, 277-280 (1999).
  14. Berg, R. F., Fedchak, J. A. NIST Calibration Services for Spinning Rotor Gauge Calibrations. Natl. Inst. Stand. Technol. Spec. Publ. , 250-293 (2015).
  15. Kou, S. . Welding Metallurgy. , 13-16 (2003).
  16. Fruehan, R. J. . Vacuum Degassing of Steel. , (1990).
  17. Fedchak, J. A., Scherschligt, J., Sefa, M. How to Build a Vacuum Spring-transport Package for Spinning Rotor Gauges. J. Vis. Exp. (110), e53937 (2016).
  18. Saitoh, M., Shimura, K., Iwata, T., Momose, T., Ishimaru, H. Influence of vacuum gauges on outgassing rate measurements. J. Vac. Sci. Technol. A. 11 (5), 2816-2821 (1993).
  19. Calder, R., Lewin, G. Reduction of stainless-steel outgassing in ultra-high vacuum. Brit. J. Appl. Phys. 18, 1459-1472 (1967).

Play Video

Diesen Artikel zitieren
Park, C., Kim, S., Ki, S., Ha, T., Cho, B. Measurement of Outgassing Rates of Steels. J. Vis. Exp. (118), e55017, doi:10.3791/55017 (2016).

View Video