Summary

高度组织的Theta振荡在鼠脑的自动检测

Published: March 10, 2017
doi:

Summary

Theta activity in the hippocampus is related to specific cognitive and behavioral stages. Here, we describe an analytical method to detect highly-organized theta oscillations within the hippocampus using a time-frequency (i.e., wavelet analysis)-based approach.

Abstract

西塔活性在septohippocampal系统中产生,并且可以使用深海马电极和植入脑电图(EEG)无线电遥测或系绳系统的方法进行记录。药理学上,海马THETA是多相(见二元理论),并且可以分化为I型和II型2θ。这些个别脑电图亚型都与特定的认知和行为状态,如觉醒,勘探,学习和记忆,更高的综合功能,等等。在神经变性疾病如阿尔茨海默氏症,结构和septohippocampal系统的功能的改变可导致受损THETA活性/振荡。海马脑电图的标准定量分析包括快速傅里叶变换(FFT)为基础的时频分析。但是,此过程不提供有关特别是在一般和高度组织THETA振荡THETA活动的详细信息。为了获得DETA在海马高度组织THETA振荡ILED的信息,我们已经开发了一种新的分析方法。该方法允许高度组织THETA振荡和其频率特性的持续时间的时间和成本有效的量化。

Introduction

睡在大脑中的Theta活动涉及到不同的认知和功能状态,包括觉醒,注意,随意运动,探索行为,注意力的行为,学习和记忆,体感集成和快速眼动(REM)1,2。原则上,可以在不同的脑区中产生THETA活动作为一个有节奏的实体,高度组织化和同步,THETA振荡。下面,我们将集中于THETA活动/被所述septohippocampal系统3,4内产生振荡的分析和定量。内的隔膜,GABA能,谷氨酸,和胆碱能神经元投射到海马和有助于THETA振荡行为的启动和维护。有对海马THETA振荡是否在隔发起的, 一个持续的讨论 </em>隔起搏器海马跟随模式,(extrahippocampal理论)或本质海马内(海马理论)5,6,7。

不论其来源,海马THETA振荡已经在感兴趣的焦点多年来,尤其是在转基因小鼠模型。这些模型允许深脑电图电极的植入和在特定的认知和行为的任务8海马THETA振荡的记录。海马THETA振荡是在自然界中异源。根据THETA振荡的所谓的二元论,可以阿托品敏感的II型theta和阿托品不敏感的I型THETA 9,10,11之间区分。后者通常可以通过毒蕈碱诱导1 / M <sUB> 3受体激动剂, 槟榔碱,毛果芸香碱和聚氨酯。然而,氨基甲酸乙酯是一种多目标药物,除了毒蕈碱活化,也施加在其它离子通道实体复杂的影响。 II型THETA,所述毒蕈碱性通路包括M 1的活化/ M 3和随后ģQ / 11(Gα)磷脂酶C介导的活化β1/4(PLCβ1/4),三磷酸肌醇(INSP 3) ,diacylglycerole(DAG),钙离子 ,和蛋白激酶C(PKC)。 PLCβ1PLCβ4的thetagenesis的作用已在敲除研究使用被验证PLCβ1 – / –和PLCβ4 – / –呈现THETA振荡12,13,14的完全丧失或显著衰减的小鼠。附加M 1,M 3和M 5下游目标(CHA毒蕈碱信令级联nnels /电流)包括各种电导,诸如经由电压依赖性K +通道(K 7节 )M型K +通道(K M);超极化K +通道(KS AHP)后慢;泄漏K +通道(K 泄漏 ),可能通过TWIK相关酸敏感的K +通道(TASK1 / 3);阳离子电流(I CAT),可能通过泄漏通道(NALCN);并经由超极化和环核苷酸门控通道(HCN)我小时 。此外,M 2 / M 4乙酰胆碱受体(乙酰胆碱受体)报告,其中内向整流干扰K +通道3.1(K IR 3.1)和内向整流通道3.2(K IR 3.2)15。

目前,市售的分析软件允许快速基于FFT的频率分析, 例如,功率分析(P,毫伏2)或功率谱密度(PSD,毫伏2 /赫兹)。电源或θ波频率范围内的功率谱密度(PSD)的分析只给其活动的全球概览。然而,为了得到详细的洞察认知和行为相关的THETA活性,高度组织THETA振荡的分析是强制性的。高度组织THETA振荡的评估是在神经变性和神经精神性疾病的领域重要性。最具实验性的疾病的研究都使用高度复杂的神经外科手术的方法来记录硬膜外表层和深层颅内脑电图转基因小鼠模型进行的。这些技术包括系绳系统16和无线电遥测设置17,18。西塔振荡可以记录为长期的录音条件下的自发和行为相关的THETA振荡。此外,THETA振荡可以RECOrded以下的药理感应而且下列动物暴露于行为或认知任务或感觉刺激,例如尾部夹持。

早期方法来表征THETA振荡被Csicsvari 等人所述 19。作者设计为短期THETA分析的半自动化的工具 – 即不适合长时间脑电图记录(15 50分钟)。我们的方法中,这里描述的,允许长期脑电图记录> 48小时20进行的分析。 Csicsvari 等。 10还提到了THETA三角洲率,但提供了高度组织THETA振荡的决心没有门槛。三角洲和θ范围定义符合我们的频率范围的定义。因为它是不明确提到,我们假设基于FFT的方法用于由Csicsvari 等。计算的θ-Δ频带的功率。这个再次从我们的方法明显不同,因为我们计算上的大量频率尺度(频率步骤Δ(F)= 0.05赫兹)基于小波的振幅,导致高得多的精度。独具一格的分析脑电图时代的持续时间是类似于我们的定义。

Klausberger 等。 21也借助THETA三角比长期脑电图记录的分析。但是,也有相对于我们的方法三大差别:i)所述脑电图历元持续时间要长得多, 至少为6秒; ⅱ)的θ-Δ比设定为4,这是比我们阈高得多,并涉及到不同的频率范围定义;和iii)电源定义很可能是基于FFT的方法,它缺乏精度高,特别是对于非常短的时间窗口(2秒, 即,5个循环为2.5赫兹的频率)振荡。在这种情况下,一个基于小波的过程是更可取的。由卡普兰等人的研究 22只计算THETA功率而忽略了THETA三角洲功率比。因此,卡普兰接近22不能伴随着高或低的增量认知丰富THETA流程进行区分。

在下面的协议,我们将提出我们的分析基于小波变换的方法来可靠地分析海马脑电图记录高度组织THETA振荡小鼠。由于该过程自动工作,它可以应用到大型数据集和长期EEG测量。

Protocol

所有的动物实验是根据当地和机构理事会关于动物保健(波恩大学,BfArM,LANUV,德国)的指导方针进行。此外,所有的动物实验是按照上级的立法, 如 1986年11月24日(86/609 / EEC)的欧洲共同体理事会指令,或个别区域或国家的法律进行。具体的努力是为了最大限度地减少使用的动物的数量,以及它们的痛苦。 1.动物住房和脑电图记录条件家鼠过滤器顶笼或使?…

Representative Results

西塔活性可以被记录在一个大范围的中枢神经系统(CNS)区域中。在这里,我们提出从小鼠海马THETA振荡的分析。在不同的行为和认知状态,可能会发生这种振荡。强烈建议来分析自发的长期任务相关的短期和药理学诱导条件下THETA振荡。 图1显示了控制条件下,具有代表性的海马CA1记录。如果动物是不是在一个自发的“THETA国家”海马脑电图…

Discussion

西塔活动是全身神经生理学中心的相关性。它可以在各种脑区域可以观察到,特别是在海马,在那里它与特定行为和认知状态。此外,海马THETA可以药理分化成阿托品敏感的II型和阿托品不敏感型我THETA。 I型被认为是涉及到运动,如走路或跑步27,28,29,30,31,而II型可在警…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Dr. Christina Ginkel (German Center for Neurodegenerative Diseases, DZNE) and Dr. Robert Stark (DZNE) for their assistance with animal breeding and animal healthcare. This work was financially supported by the Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany.

Materials

Carprofen (Rimadyl VET – Injektionslösung) Pfizer PZN 0110208208 20ml
binocular surgical magnification microscope Zeiss Stemi 2000 0000001003877, 4355400000000, 0000001063306, 4170530000000, 4170959255000, 4551820000000, 4170959040000, 4170959050000
Dexpanthenole (Bepanthen Wund- und Heilsalbe) Bayer PZN: 1578818
drapes (sterile) Hartmann PZN 0366787
70% ethanol Carl Roth 9065.5
0.3% / 3% hydrogene peroxide solution Sigma 95321 30% stock solution
gloves (sterile) Unigloves 1570
dental glas ionomer cement KentDental /NORDENTA 957 321
heat-based surgical instrument sterilizer F.S.T. 18000-50
high-speed dental drill Adeor SI-1708
Inhalation narcotic system (isoflurane) Harvard Apparatus GmbH 34-1352, 10-1340, 34-0422, 34-1041, 34-0401, 34-1067, 72-3044, 34-0426, 34-0387, 34-0415, 69-0230
Isoflurane Baxter 250 ml PZN 6497131
Ketamine Pfizer PZN 07506004
Lactated Ringer's solution (sterile) Braun L7502
Nissl staining solution Armin Baack BAA31712159
pads (sterile) ReWa Krankenhausbedarf 2003/01
Steel and tungsten electrodes parylene coated FHC Inc., USA UEWLGESEANND
stereotaxic frame Neurostar 51730M ordered at Stoelting
(Stereo Drive-New Motorized Stereotaxic)
tapes (sterile) BSN medical GmbH & Co. KG 626225
TA10ETA-F20 DSI 270-0042-001X Radiofrequency transmitter 3.9 g, 1.9 cc, input voltage range ± 2.5 mV, channel bandwidth (B) 1-200 Hz, nominal sampling rate (f) 1000 Hz (f = 5B) temperature operating range 34-41 °C warranted battery life 4 months
TL11M2-F20EET DSI 270-0124-001X Radiofrequency transmitter 3.9 g, 1.9 cc, input voltage range ± 1.25 mV, channel bandwidth (B) 1-50 Hz, nominal sampling rate (f) 250 Hz (f = 5B) temperature operating range 34-41 °C warranted battery life 1.5 months
Vibroslicer 5000 MZ Electron Microscopy Sciences 5000-005
Xylazine (Rompun) Bayer PZN: 1320422
Matlab Mathworks Inc. programming, computing and visualization software
SPSS IBM statistical analysis software

Referenzen

  1. Vanderwolf, C. H. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 26, 407-418 (1969).
  2. Kahana, M. J., Seelig, D., Madsen, J. R. Theta returns. Curr Opin Neurobiol. 11, 739-744 (2001).
  3. Varga, V., et al. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum. J Physiol. 586, 3893-3915 (2008).
  4. Takano, Y., Hanada, Y. The driving system for hippocampal theta in the brainstem: an examination by single neuron recording in urethane-anesthetized rats. Neurosci Lett. 455, 65-69 (2009).
  5. Goutagny, R., Manseau, F., Jackson, J., Danik, M., Williams, S. In vitro activation of the medial septum-diagonal band complex generates atropine-sensitive and atropine-resistant hippocampal theta rhythm: an investigation using a complete septohippocampal preparation. Hippocampus. 18, 531-535 (2008).
  6. Manseau, F., Goutagny, R., Danik, M., Williams, S. The hippocamposeptal pathway generates rhythmic firing of GABAergic neurons in the medial septum and diagonal bands: an investigation using a complete septohippocampal preparation in vitro. J Neurosci. 28, 4096-4107 (2008).
  7. Hangya, B., Borhegyi, Z., Szilagyi, N., Freund, T. F., Varga, V. GABAergic neurons of the medial septum lead the hippocampal network during theta activity. J Neurosci. 29, 8094-8102 (2009).
  8. Siwek, M. E., et al. Altered theta oscillations and aberrant cortical excitatory activity in the 5XFAD model of Alzheimer’s disease. Neural Plast. 2015, 781731 (2015).
  9. Buzsaki, G. Theta oscillations in the hippocampus. Neuron. 33, 325-340 (2002).
  10. Buzsaki, G., et al. Hippocampal network patterns of activity in the mouse. Neurowissenschaften. 116, 201-211 (2003).
  11. Buzsaki, G., Moser, E. I. Memory navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci. 16, 130-138 (2013).
  12. Shin, J. Theta rhythm heterogeneity in humans. Clin Neurophysiol. 121, 456-457 (2010).
  13. Shin, J., et al. Phospholipase C beta 4 in the medial septum controls cholinergic theta oscillations and anxiety behaviors. J Neurosci. 29, 15375-15385 (2009).
  14. Shin, J., Kim, D., Bianchi, R., Wong, R. K., Shin, H. S. Genetic dissection of theta rhythm heterogeneity in mice. Proc Natl Acad Sci U S A. 102, 18165-18170 (2005).
  15. Brown, D. A., Adams, P. R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature. 283, 673-676 (1980).
  16. Senkov, O., Mironov, A., Dityatev, A. A novel versatile hybrid infusion-multielectrode recording (HIME) system for acute drug delivery and multisite acquisition of neuronal activity in freely moving mice. Front Neurosci. 9, 425 (2015).
  17. Lundt, A., et al. EEG Radiotelemetry in Small Laboratory Rodents: A Powerful State-of-the Art Approach in Neuropsychiatric, Neurodegenerative, and Epilepsy Research. Neural Plast. 2016, 8213878 (2016).
  18. Papazoglou, A., et al. Non-restraining EEG radiotelemetry: epidural and deep intracerebral stereotaxic EEG electrode placement. J Vis Exp. (112), (2016).
  19. Csicsvari, J., Hirase, H., Czurko, A., Buzsaki, G. Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron. 21, 179-189 (1998).
  20. Muller, R., et al. Atropine-sensitive hippocampal theta oscillations are mediated by Cav2.3 R-type Ca2+ channels. Neurowissenschaften. 205, 125-139 (2012).
  21. Klausberger, T., et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature. 421, 844-848 (2003).
  22. Caplan, J. B., Madsen, J. R., Raghavachari, S., Kahana, M. J. Distinct patterns of brain oscillations underlie two basic parameters of human maze learning. J Neurophysiol. 86, 368-380 (2001).
  23. Montgomery, S. M., Buzsaki, G. Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc Natl Acad Sci U S A. 104, 14495-14500 (2007).
  24. Kronland-Martinet, R., Morlet, J., Grossman, A. Analysis of sound patterns through wavelet transform. Int J Pattern Recognit Artif Intell. 1, 29 (1987).
  25. Buzsaki, G., Wang, X. J. Mechanisms of gamma oscillations. Annu Rev Neurosci. 35, 203-225 (2012).
  26. Goutagny, R., Jackson, J., Williams, S. Self-generated theta oscillations in the hippocampus. Nat Neurosci. 12, 1491-1493 (2009).
  27. Bland, B. H. The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol. 26, 1-54 (1986).
  28. Leung, L. S. Generation of theta and gamma rhythms in the hippocampus. Neurosci Biobehav Rev. 22, 275-290 (1998).
  29. Shin, J., Talnov, A. A single trial analysis of hippocampal theta frequency during nonsteady wheel running in rats. Brain Res. 897, 217-221 (2001).
  30. Shin, J. A unifying theory on the relationship between spike trains, EEG, and ERP based on the noise shaping/predictive neural coding hypothesis. Biosystems. 67, 245-257 (2002).
  31. Kramis, R., Vanderwolf, C. H., Bland, B. H. Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp Neurol. 49, 58-85 (1975).
  32. Lu, B. L., Shin, J., Ichikawa, M. Massively parallel classification of single-trial EEG signals using a min-max modular neural network. IEEE Trans Biomed Eng. 51, 551-558 (2004).
  33. Robinson, T. E., Kramis, R. C., Vanderwolf, C. H. Two types of cerebral activation during active sleep: relations to behavior. Brain Res. 124, 544-549 (1977).
check_url/de/55089?article_type=t

Play Video

Diesen Artikel zitieren
Müller, R., Papazoglou, A., Soos, J., Lundt, A., Wormuth, C., Henseler, C., Ehninger, D., Broich, K., Weiergräber, M. Automatic Detection of Highly Organized Theta Oscillations in the Murine EEG. J. Vis. Exp. (121), e55089, doi:10.3791/55089 (2017).

View Video