Summary

水凝胶的合成与防污性能作为膜的净水

Published: April 07, 2017
doi:

Summary

This paper reports practical methods to prepare hydrogels in freestanding films and impregnated membranes and to characterize their physical properties, including water transport properties.

Abstract

水凝胶已被广泛利用,以提高水的净化膜的表面亲水性,增加了防污性,从而通过膜随时间获得稳定的水渗透性。在这里,我们报告一个浅显的方法来制备基于两性离子的膜应用的水凝胶。独立式的薄膜可以由磺基甜菜碱甲基丙烯酸酯(SBMA)通过光聚合的聚交联剂(乙二醇)二丙烯酸酯(PEGDA)来制备。水凝胶也可通过浸渍制备成疏水性的多孔载体,以提高机械强度。这些膜可以通过衰减全反射傅立叶来表征变换红外光谱(ATR-FTIR)来确定(甲基)丙烯酸酯基团的转化程度,使用亲水性和差示扫描量热法(DSC)对聚合物链的动态测角器。我们还报告的协议,以确定死胡同FILTRA的透水性灰系统和污垢对膜性能的影响(牛血清白蛋白,BSA)。

Introduction

有一个非常需要开发低成本和高效节能技术,以满足日益增长的需求,产生干净的水。聚合物膜已成为一个领先的技术水净化由于其固有的优点,诸如它们的高的能量效率,成本低,简单并在操作1。膜允许纯水渗透通过而拒绝该污染物。然而,膜往往受到由在进料水中的污染物,其可以被吸附在膜表面上从它们的有利的相互作用2,3结垢。结垢可显着通过膜减少的水通量,增加所需要的薄膜面积和水净化的成本。

以减轻结垢的有效途径是修改膜表面以增加亲水性,从而降低在有利膜表面和污物之间teractions。一种方法是使用薄膜涂层具有超亲水3倍的水凝胶。水凝胶通常具有高的水渗透性;因此,薄膜涂层可以增加通过膜的长期水渗透率由于减轻的结垢,尽管在整个膜中的略微增加输送阻力。水凝胶也可以直接制作成用于水净化的浸渍膜渗透压应用4。

两性离子物质同时含有正和负电荷的官能团,具有净中性电荷,并且具有通过静电诱导的氢键5,6,7,8,9强表面水化。紧密结合的水化层用作物理和能垒,从而防止污物附着在表面上,因此证明优异的防污性10。两性离子聚合物,如聚(磺基甜菜碱甲基丙烯酸酯)(PSBMA)和聚(羧基甜菜碱甲基丙烯酸酯)(PCBMA),已被用于修饰膜表面通过涂布11,12,13,14,15,16,17,18,以增加表面亲水性,因此防污性。

我们在这里表明了容易的方法,以制备使用经由光聚合,这是使用聚(乙二醇)交联的磺基甜菜碱甲基丙烯酸酯(SBMA)两性离子水凝胶丙烯酸酯(PEGDA,m×n个 = 700克/摩尔),以改善机械强度。我们还提出一个过程通过在光聚合前的高度多孔疏水性载体含浸于单体和交联剂以构建健壮膜。独立式膜和浸渍膜的物理和水输送性质彻底特征在于阐明用于水净化的结构/性质关系。所制备的水凝胶可用于作为表面涂层,以提高膜的分离性能。通过调整交联密度或通过浸渍到疏水性多孔载体,这些材料也能形成薄膜,与用于渗透过程,诸如正向渗透或压力延迟渗透4足够的机械强度。

Protocol

1.预聚物溶液的制备 使用水作为溶剂制备 10.00克去离子(DI)水添加到玻璃瓶中有磁力搅拌棒。 测量2.00克SBMA的,并将其转移至含有水的玻璃瓶中。搅拌30分钟的溶液中,直到SBMA完全溶解。 在一个单独的瓶中,加入20.00克PEGDA的(m×n个 = 700克/摩尔)。 添加20.0毫克1-羟基环己基苯酮(HCPK),光引发剂,给PEGDA溶液。让溶液搅拌至少30分钟。 </l…

Representative Results

随着在步骤1.1和1.2中指定的预聚物溶液制备自立式膜分别称为S50和S30。详细信息显示在表1中 。在步骤1.2中指定的预聚物溶液也用于制造浸渍膜,其被表示为IMS30。由于多孔性支撑体是由疏水性的聚乙烯的,仅含有乙醇的预聚物溶液可以浸渍到载体并形成透明膜, 如图1 4。 <p class="jove_conte…

Discussion

我们已经证明了一个浅显的方法来制备独立电影和基于两性离子水凝胶浸渍膜。三(甲基)丙烯酸酯的特征峰的消失( ,810,1190,和1410厘米-1)在所得到的聚合物膜的红外光谱和含浸膜( 图2)表示的单体和交联剂4的良好的转化率 19,21。此外,该SO 3的外观在光谱的膜和膜振…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

We gratefully acknowledge the financial support of this work by the Korean Carbon Capture and Sequestration R&D Center (KCRC).

Materials

Poly(ethylene glycol) diacrylate                  Mn = 700 (PEGDA) Sigma Aldrich 455008
1-Hydroxycyclohexyl phenyl ketone, 99% (HCPK) Sigma Aldrich 405612
[2-(Methacrloyloxy)ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide, 97% Sigma Aldrich 537284 Acutely Toxic
Ethanol, 95% Koptec, VWR International V1101 Flamable
Decane, anhydrous, 99% Sigma Aldrich 457116
Solupor Membrane Lydall 7PO7D
Micrometer  Starrett 2900-6
ATR-FTIR Vertex 70
DSC: TA Q2000 TA Instruments
Rame’-hart Goniometer: Model 190 Rame’-hart Instruments
Ultraviolet Crosslinker: CX-2000 Ultra-Violet Products UV radiation 
Permeation Cell: Model UHP-43 Advantec MFS
Deionized Water: Milli-Q Water EMD Millipore

Referenzen

  1. Qasim, M., Darwish, N. A., Sarp, S., Hilal, N. Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination. , 47-69 (2015).
  2. Geise, G. M., et al. Water purification by membranes: The role of polymer science. J. Polym. Sci. Part B Polym. Phys. 48 (15), 1685-1718 (2010).
  3. Miller, D. J., Dreyer, D., Bielawski, C., Paul, D. R., Freeman, B. D. Surface modification of water purification membranes: A review. Angew Chem Int Ed Engl. , (2016).
  4. Zhao, S. Z., Huang, K. P., Lin, H. Q. Impregnated Membranes for Water Purification Using Forward Osmosis. Ind. Eng. Chem. Res. 54 (49), 12354-12366 (2015).
  5. Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S., Whitesides, G. M. A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir. 17 (18), 5605-5620 (2001).
  6. Jiang, S., Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mat. 22 (9), 920-932 (2010).
  7. Shah, S., et al. Transport properties of small molecules in zwitterionic polymers. J. Polym. Sci. Part B Polym. Phys. 54 (19), 1924-1934 (2016).
  8. Shao, Q., Jiang, S. Y. Molecular Understanding and Design of Zwitterionic Materials. Adv Mat. 27 (1), 15-26 (2015).
  9. Zhang, Z., Chao, T., Chen, S., Jiang, S. Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir. 22 (24), 10072-10077 (2006).
  10. Chen, S., Li, L., Zhao, C., Zheng, J. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer. 51 (23), 5283-5293 (2010).
  11. Bengani, P., Kou, Y. M., Asatekin, A. Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity. J Membr Sci. 493, 755-765 (2015).
  12. Chiang, Y. C., Chang, Y., Chuang, C. J., Ruaan, R. C. A facile zwitterionization in the interfacial modification of low bio-fouling nanofiltration membranes. J Membr Sci. 389, 76-82 (2012).
  13. Mi, Y. F., Zhao, Q., Ji, Y. L., An, Q. F., Gao, C. J. A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance. J Membr Sci. 490, 311-320 (2015).
  14. Shafi, H. Z., Khan, Z., Yang, R., Gleason, K. K. Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling. Desalination. 362, 93-103 (2015).
  15. Yang, R., Goktekin, E., Gleason, K. K. Zwitterionic Antifouling Coatings for the Purification of High-Salinity Shale Gas Produced Water. Langmuir. 31 (43), 11895-11903 (2015).
  16. Yang, R., Jang, H., Stocker, R., Gleason, K. K. Synergistic Prevention of Biofouling in Seawater Desalination by Zwitterionic Surfaces and Low-Level Chlorination. Adv Mat. 26 (11), 1711-1718 (2014).
  17. Azari, S., Zou, L. D. Using zwitterionic amino acid L-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance. J Membr Sci. 401, 68-75 (2012).
  18. Chang, C., et al. Underwater Superoleophobic Surfaces Prepared from Polymer Zwitterion/Dopamine Composite Coatings. Adv Mater Inter. , (2016).
  19. Lin, H., Kai, T., Freeman, B. D., Kalakkunnath, S., Kalika, D. S. The Effect of Cross-Linking on Gas Permeability in Cross-Linked Poly(Ethylene Glycol Diacrylate). Macromolecules. 38 (20), 8381-8393 (2005).
  20. Sagle, A. C., Ju, H., Freeman, B. D., Sharma, M. M. PEG-based hydrogel membrane coatings. Polymer. 50 (3), 756-766 (2009).
  21. Wu, Y. -. H., Park, H. B., Kai, T., Freeman, B. D., Kalika, D. S. Water uptake, transport and structure characterization in poly(ethylene glycol) diacrylate hydrogels. J Membr Sci. 347 (1-2), 197-208 (2010).
  22. Rahimpour, A., et al. Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination. 286, 99-107 (2012).
  23. Gulmine, J. V., Janissek, P. R., Heise, H. M., Akcelrud, L. Polyethylene characterization by FTIR. Polym Testing. 21 (5), 557-563 (2002).
  24. Araújo, J. R., Waldman, W. R., De Paoli, M. A. Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect. Polym. Degrad. Stab. 93 (10), 1770-1775 (2008).
  25. McCloskey, B. D., et al. Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer. 51 (15), 3472-3485 (2010).

Play Video

Diesen Artikel zitieren
Tran, T. N., Ramanan, S. N., Lin, H. Synthesis of Hydrogels with Antifouling Properties As Membranes for Water Purification. J. Vis. Exp. (122), e55426, doi:10.3791/55426 (2017).

View Video