Summary

使用3D生物印刷创建心脏组织展示球体的机械整合

Published: July 02, 2017
doi:

Summary

该协议描述了不使用生物材料的心脏组织的3D生物印迹。 3D生物印迹的心脏贴片显示组件球体的机械整合,并且在心脏组织再生和心脏病的3D模型中是非常有希望的。

Abstract

该协议描述了仅使用细胞而不使用生物材料的心脏组织的3D生物印迹。首先分离心肌细胞,内皮细胞和成纤维细胞,计数并以所需细胞比例混合。它们在超低附件96孔板中的各个孔中共培养。在3天内,殴打球体。然后使用真空抽吸由喷嘴拾取这些球体,并使用3D生物打印机在针阵列上组装。然后允许球体在针阵列上熔断。三维生物印迹三天后,球状体作为完整的贴片被去除,已经自发地发生跳动。 3D生物印迹的心脏贴片显示组件球体的机械整合,并且在心脏组织再生和心脏病的3D模型中是非常有希望的。

Introduction

3D生物印迹有很多不同的方法 1,2,3 。 3D生物打印通常通过印刷技术1进行分类,例如喷墨生物印刷,微压缩生物印刷,激光辅助生物印刷,方法的组合或更新的方法。 3D生物印迹也可以分为无支架或支架依赖的方法4 。 3D生物印迹的大多数方法是支架依赖的,其中需要生物材料, 例如生物蛋白5或支架6 。然而,支架依赖的3D生物印迹面临许多问题和局限性,如脚手架材料的免疫原性,专有生物蛋白的成本,降解产物的速度和毒性等。

SCAF已经尝试使用球体的无折叠心脏组织工程8 ,有可能克服支架依赖组织工程的这些缺点。然而,正如作者在该论文中所承认的那样,在生物制造过程中难以强力地处理和定位固定位置的球体。伴随使用3D生物印迹和基于球形的组织工程有可能克服这些困难。在本协议中,我们描述了没有其他生物材料的心脏组织的3D生物印迹,仅使用球形形式的细胞。

基于无支架的基于球体的3D生物打印机9具有使用真空抽吸拾取单个球体的能力,并将其定位在针阵列上。 3D生物印刷中针阵列上的定位球体的概念是从古代日本使用针阵(被称为“ kenzan ”)的灵感来的nese艺术的花卉安排, ikebana。该系统允许球体精确地定位在任何配置中,并导致单个球体在短时间内熔合在一起以产生3D生物印刷组织。因此,该方法允许容易地操纵球体,对于无支架器官生物制造的未来具有潜在的影响。

Protocol

1.心肌细胞的制备如上所述,在用基底膜基质包被的6孔板上产生和培养人诱导的多能干细胞(hiPSC)。 使用先前描述的方法11,12将hiPSC分化为hiPSC来源的心肌细胞(hiPSC-CM)。 分化后第19天,使用2mL胰蛋白酶/ EDTA的胰蛋白酶/ EDTA 0.05%的室温分离5分钟。 在光学显微镜下监测心肌细胞以观察细胞解离。 使用2mL胰蛋白酶抑制剂中和胰蛋白酶0.0125%。 …

Representative Results

在步骤4.4(共培养)结束时,每个孔中的细胞应在超低附着96孔U底板的底部聚集,通过重力形成球体。这些球体包含hiPSC-CM,HCF和HUVEC,并且可以在光学显微镜下目视检查,其中它们应该通过二维投影呈现圆形( 图1 )。在步骤6.3结束时,3D生物印迹的心脏贴片应该包含组织空隙,这是由于针阵列产生的针孔( 图2左侧)。在这?…

Discussion

It is important to use beating, functional spheroids for 3D bioprinting. If spheroids are not beating, continuing to use them will invariably result in a non-functional 3D bioprinted patch.

One benefit of this approach is the ability to manipulate the cell content of the patch by varying the total number of cells and the percentage of cardiomyocytes, endothelial cells, and fibroblasts in the spheroids. This allows for many different types of cardiac patches to be printed, with varying histolog…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者承认以下资金来源:神经科学心血管研究基金和马里兰州干细胞研究基金(2016-MSCRFI-2735)。

Materials

Geltrex Invitrogen  A1413202
Trypsin/EDTA 0.05% Thermo Fisher 15400054
Defined Trypsin inhibitor 0.0125% Thermo Fisher R007100
RPMI Cell Media Invitrogen 11875-093 RPMI supplemented with B27 constitutes HIPSC-CM culture media
B-27 Supplement Thermo Fisher 17504044 RPMI supplemented with B27 constitutes HIPSC-CM culture media
Countess Automated Cell Counter Invitrogen C10227
Human cardiac fibroblasts (adult ventricular type) Sciencell 6310
Human umbilical vein endothelial cells Lonza CC-2935
PrimeSurface ultra-low attachment 96-well U-bottom plates  Akita Sumitomo Bakelite Co. MS-9096UZ
Regenova Bio 3D Printer Cyfuse Biomedical K.K. N/A www.cyfusebio.com/en/
Trypan Blue Solution, 0.4% Thermo Fisher 15250061
Troponin T Antibody Thermo Fisher 701620
Connexin 43 (Cx43) Antibody Chemicon MAB3068
ProLong Gold Antifade Mountant with DAPI Thermo Fisher P36935

Referenzen

  1. Murphy, S. V., Atala, A. 3D bioprinting of tissues and organs. Nat Biotech. 32, 773-785 (2014).
  2. Bajaj, P., Schweller, R. M., Khademhosseini, A., West, J. L., Bashir, R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Ann Rev Biomed Eng. 16, 247-276 (2014).
  3. Patra, S., Young, V. A Review of 3D Printing Techniques and the Future in Biofabrication of Bioprinted Tissue. Cell Biochem Biophy. 74, 93-98 (2016).
  4. Moldovan, N. I., Hibino, N., Nakayama, K. Principles of the Kenzan Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting. Tissue Eng Part B Rev. , (2017).
  5. Cui, X., Boland, T., D’Lima, D. D., Lotz, M. K. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 6, 149-155 (2012).
  6. Murphy, C. M., Haugh, M. G., O’Brien, F. J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomater. 31, 461-466 (2010).
  7. Noguchi, R., et al. Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease. J Heart Lung Transpl. 35, 137-145 (2016).
  8. Mironov, V., et al. Organ printing: tissue spheroids as building blocks. Biomater. 30, 2164-2174 (2009).
  9. Itoh, M., et al. Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae. PloS One. 10, e0136681 (2015).
  10. Lieu, P. T., Fontes, A., Vemuri, M. C., Macarthur, C. C. Generation of induced pluripotent stem cells with CytoTune, a non-integrating Sendai virus. Methods Mol Biol. 997, 45-56 (2013).
  11. Li, S., Cheng, H., Tomaselli, G. F., Li, R. A. Mechanistic basis of excitation-contraction coupling in human pluripotent stem cell-derived ventricular cardiomyocytes revealed by Ca2+ spark characteristics: direct evidence of functional Ca2+-induced Ca2+ release. Heart Rhythm. 11, 133-140 (2014).
  12. Boheler, K. R., et al. A Human Pluripotent Stem Cell Surface N-Glycoproteome Resource Reveals Markers, Extracellular Epitopes, and Drug Targets. Stem Cell Rep. 3, 185-203 (2014).
  13. ScienCell Research Laboratories. . Human Cardiac Fibroblasts (adult ventricular) Product Sheet. , (2017).
  14. Lonza Walkersville, Inc. . Endothelial Cell Systems – Technical Information & Instructions.,. , (2015).
  15. Thermo Fisher Scientific, Inc. . Immunofluorescence Method for IHC Detection. , (2017).
  16. Murata, D., et al. A preliminary study of osteochondral regeneration using a scaffold-free three-dimensional construct of porcine adipose tissue-derived mesenchymal stem cells. J Orthop Surg Res. 10, (2015).
  17. Mosadegh, B., Xiong, G., Dunham, S., Min, J. K. Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater. 10, 034002 (2015).
  18. Chang, C. C., Boland, E. D., Williams, S. K., Hoying, J. B. Direct-write Bioprinting Three-Dimensional Biohybrid Systems for Future Regenerative Therapies. J Biomed Mater Res. Part B, Appl Biomater. 98, 160-170 (2011).
  19. Lee, J. M., Sing, S. L., Tan, E. Y. S., Yeong, W. Y. Bioprinting in cardiovascular tissue engineering: a review. International J Bioprinting. 2 (2016), (2016).

Play Video

Diesen Artikel zitieren
Ong, C. S., Fukunishi, T., Nashed, A., Blazeski, A., Zhang, H., Hardy, S., DiSilvestre, D., Vricella, L., Conte, J., Tung, L., Tomaselli, G., Hibino, N. Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting. J. Vis. Exp. (125), e55438, doi:10.3791/55438 (2017).

View Video