Summary

一种新型的腱绦缝合技术,采用组织工程胶原蛋白移植物修复大肌腱缺损

Published: December 10, 2021
doi:

Summary

在本文中,我们提出了一种 体外原位 方案,通过用工程胶原移植物填充高达1.5厘米的肌腱间隙来修复该肌腱间隙。这是通过开发一种改良的缝合技术来承担机械负荷,直到移植物成熟到宿主组织中来实现的。

Abstract

使用肌腱移植物对大肌腱缺损进行手术治疗具有挑战性,因为可以很容易地识别和使用供体的部位数量有限。目前,这个间隙充满了肌腱自体,同种异体,异种或人工移植物,但由于规模的原因,确保它们的临床方法不一定可以转化为动物。为了评估新的生物材料或研究由1型胶原蛋白组成的肌腱移植物,我们开发了一种改良的缝合技术,以帮助保持工程肌腱与肌腱末端对齐。这些移植物的机械性能不如天然肌腱。为了将工程肌腱纳入临床相关的负荷修复模型,采用了一种策略来卸载组织工程肌腱移植物,并允许工程肌腱 在体内 成熟和整合,直到形成机械上健全的新肌腱。我们使用结合1型胶原组织工程肌腱构建体来描述这种技术。

Introduction

肌腱断裂可能是由于外在因素引起的,例如创伤性撕裂伤或肌腱负荷过重。由于施加在肌腱修复上的外部拉力,大多数肌腱修复技术不可避免地会形成间隙。目前,肌腱缺陷/间隙由自身、同种异体、异种或人工移植物填充,但它们的可用性是有限的,供体部位是发病的来源。

从天然聚合物(如胶原蛋白)制造肌腱移植物的组织工程方法具有生物相容性的独特优势,可以提供重要的细胞外基质(ECM)成分,促进细胞整合。然而,由于缺乏原纤维对准,工程肌腱(ET)的机械性能不如天然肌腱。为了增加较弱胶原蛋白的机械性能,已经使用了许多方法,例如真空下的物理交联,紫外线辐射和脱水热处理1。此外,通过与核黄素的化学交联,酶法和非酶法在体外增加了胶原蛋白的密度和杨氏模量2、3。然而,通过添加交联剂,胶原蛋白的生物相容性受到损害,因为研究表明机械性能发生了33%的变化,细胞活力损失了40%3,4,5 。对准和机械强度的逐渐累积可以通过循环载荷6获得;然而,这可以有效地获得in vivo7。

为了使ET在体内整合并获得强度而无需化学改变,一种方法是使用稳定缝合技术将较弱的结构固定到位。大多数肌腱修复依靠缝合设计将肌腱末端固定在一起;因此,对这些现有技术的修改可以提供逻辑解8,9。

直到20世纪80年代,2股修复被广泛使用,但最近的外科文献描述了在修复10,11中使用4股,6股甚至8股。1985年,Savage描述了具有6个锚点的6股缝合技术,并且比使用4股12的Bunnell缝合技术要强得多。此外,在尸体和原位模型中,8股修复比其他链强43%,但这些修复并未被广泛实施,因为在技术上很难准确再现修复13,14,15,16。因此,更多的核心缝合线与修复肌腱的生物力学特性的比例增加有关。然而,缝合点周围细胞活力丧失,过度缝合造成的创伤可能会损害肌腱,这可能会损害肌腱愈合17。缝合技术应提供平衡且相对无弹性的强几何修复,以尽量减少修复后的肌腱间隙。此外,缝合线的位置及其结必须有策略地放置,以便它们不会干扰滑动,血液供应和愈合,直到获得足够的强度积累10,18。

为了确定在肌腱断裂之间确保较弱的ET移植物或其他移植物材料的可行性,我们开发了一种新颖的缝合技术,可以卸载移植物,使其成熟并逐渐整合到体内的宿主组织中

Protocol

注意:实验设计和伦理批准是从UCL机构审查委员会(IRB)获得的。所有实验均根据内政部的规定和1986年动物(科学程序)法的指导方针以及欧洲指令2010/63 / EU(2013)的修订立法进行。兔子由指定的兽医(NVS)定期检查,并由指定的动物护理和福利官员(NACWO)在一天内检查两次(根据内政部的指导方针和规定)。在他们被安乐死之前,他们没有表现出任何疼痛的迹象。 1. 组织…

Representative Results

我们使用由I型胶原蛋白制成的胶原蛋白移植物,因为这是肌腱中发现的主要蛋白质。它几乎占肌腱中总胶原蛋白的95%;因此,胶原蛋白在体内表现出模仿肌腱的所有理想特性21,22。 在这项研究中,从大鼠尾腱中提取使用的I型胶原蛋白并溶解在乙酸(2.15mg / mL)中。为了聚合这…

Discussion

在这项研究中,组织工程I型胶原移植物被选为肌腱移植物,因为胶原蛋白是一种天然聚合物,并用作各种组织工程应用的生物材料27,28。 此外,胶原蛋白占肌腱干质量的60%,其中95%是1型胶原蛋白21,29,30,31,32。 为了?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者要感谢UCL为这个项目提供资金。

Materials

Rat tail type 1 Collagen  First Link, Birmingham, UK 60-30-810
prolene sutures 6-0 Ethicon Ltd, Edinburgh, U.K. EP8726H
prolene sutures 3-0 Ethicon Ltd, Edinburgh, U.K. D8911
Whatman filter paper SIGMA-ALDRICH  WHA10010155
Gibco DMEM, high glucose Thermo Fisher Scientific  11574486
Nylon mesh  Plastok (Meshes and Filtration) Ltd. NA

Referenzen

  1. Wollensak, G., Spoerl, E., Seiler, T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. American Journal of Ophthalmology. 135, 620-627 (2003).
  2. Tanzer, M. L. Cross-Linking of Collagen. Science. 180, 561-566 (1973).
  3. Reiser, K., McCormick, R. J., Rucker, R. B. Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB Journal. 6, 2439-2449 (1992).
  4. Kanungo, B. P., Gibson, L. J. Density-property relationships in collagen-glycosaminoglycan scaffolds. Acta Biomaterialia. 6, 344-353 (2010).
  5. Weadock, K. S., Miller, E. J., Bellincampi, L. D., Zawadsky, J. P., Dunn, M. G. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. Journal of Biomedical Materials Research. 29, 1373-1379 (1995).
  6. Kalson, N. S., et al. Slow Stretching That Mimics Embryonic Growth Rate Stimulates Structural and Mechanical Development of Tendon-Like Tissue In Vitro. Developmental Dynamics. 240, 2520-2528 (2011).
  7. Torigoe, K., et al. Mechanisms of collagen fibril alignment in tendon injury: from tendon regeneration to artificial tendon. Journal of Orthopaedic Research. 29, 1944-1950 (2011).
  8. Ketchum, L. D. Suture materials and suture techniques used in tendon repair. Hand Clinics. 1, 43-53 (1985).
  9. Lawrence, T. M., Davis, T. R. A biomechanical analysis of suture materials and their influence on a four-strand flexor tendon repair. The Journal of Hand Surgery. 30, 836-841 (2005).
  10. Strickland, J. W. Development of flexor tendon surgery: Twenty-five years of progress. The Journal of Hand Surgery. 25, 214-235 (2000).
  11. Moriya, K., et al. Clinical outcomes of early active mobilization following flexor tendon repair using the six-strand technique: short- and long-term evaluations. The Journal of Hand Surgery, European volume. , (2014).
  12. Savage, R. In vitro studies of a new method of flexor tendon repair. Journal of Hand Surgery. 10, 135-141 (1985).
  13. Uslu, M., et al. Flexor tendons repair: effect of core sutures caliber with increased number of suture strands and peripheral sutures. A sheep model. Orthopaedics & Traumatology: Surgery & Research : OTSR. 100, 611-616 (2014).
  14. Osei, D. A., et al. The Effect of Suture Caliber and Number of Core Suture Strands on Zone II Flexor Tendon Repair: A Study in Human Cadavers. Journal of Hand Surgery. 39, 262-268 (2013).
  15. Dovan, T. T., Ditsios, K. T., Boyer, M. I. Eight-strand core suture technique for repair of intrasynovial flexor tendon lacerations. Techniques in Hand & Upper Extremity Surgery. 7, 70-74 (2003).
  16. Silva, M. J., et al. The effects of multiple-strand suture techniques on the tensile properties of repair of the flexor digitorum profundus tendon to bone. The Journal of Bone and Joint surgery. 80, 1507-1514 (1998).
  17. Wong, J. K., Alyouha, S., Kadler, K. E., Ferguson, M. W., McGrouther, D. A. The cell biology of suturing tendons. Matrix Biology. 29, 525-536 (2010).
  18. Strickland, J. W. Flexor Tendon Injuries: II. Operative Technique. The Journal of the American Academy of Orthopaedic Surgeons. 3, 55-62 (1995).
  19. Brown, R. A., Wiseman, M., Chuo, C. B., Cheema, U., Nazhat, S. N. Ultrarapid Engineering of Biomimetic Materials and Tissues: Fabrication of Nano- and Microstructures by Plastic Compression. Advanced Functional Materials. 15, 1762-1770 (2005).
  20. Sawadkar, P., Alexander, S., Mudera, V. Tissue-engineered collagen grafts to treat large tendon defects. Regenerative Medicine. 9, 249-251 (2014).
  21. Evans, J. H., Barbenel, J. C. Structural and mechanical properties of tendon related to function. Equine veterinary journal. 7, 1-8 (1975).
  22. Riley, G. P., et al. Glycosaminoglycans of human rotator cuff tendons: changes with age and in chronic rotator cuff tendinitis. Annals of the Rheumatic Diseases. 53, 367-376 (1994).
  23. Bell, E., Ivarsson, B., Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proceedings of the National Academy of Sciences of the United States of America. 76, 1274-1278 (1979).
  24. Kim, H. M., et al. Technical and biological modifications for enhanced flexor tendon repair. The Journal of Hand Surgery. 35, 1031-1038 (2010).
  25. Kim, J. B., de Wit, T., Hovius, S. E., McGrouther, D. A., Walbeehm, E. T. What is the significance of tendon suture purchase. The Journal of Hand Surgery, European Volume. 34, 497-502 (2009).
  26. Sawadkar, P., et al. Development of a surgically optimized graft insertion suture technique to accommodate a tissue-engineered tendon in vivo. BioResearch Open Access. 2, 327-335 (2013).
  27. Hadjipanayi, E., et al. Mechanisms of structure generation during plastic compression of nanofibrillar collagen hydrogel scaffolds: towards engineering of collagen. Journal of Tissue Engineering and Regenerative Medicine. 5, 505-519 (2011).
  28. Micol, L. A., et al. High-density collagen gel tubes as a matrix for primary human bladder smooth muscle cells. Biomaterials. 32, 1543-1548 (2011).
  29. Lian Cen, L., Liu, W., Cui, L., Zhang, W., Cao, Y. Collagen Tissue Engineering: Development of Novel Biomaterials and applications. Pediatric Research. 63, 492-496 (2008).
  30. Harris, M. T., et al. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. Journal of Orthopaedic Research. 22, 998-1003 (2004).
  31. Butler, D. L., et al. The use of mesenchymal stem cells in collagen-based scaffolds for tissue-engineered repair of tendons. Nature Protocols. 5, 849-863 (2010).
  32. Cen, L., Liu, W., Cui, L., Zhang, W., Cao, Y. Collagen Tissue Engineering: Development of Novel Biomaterials and Applications. Pediatric Research. 63, 492-496 (2008).
  33. Yamaguchi, H., Suenaga, N., Oizumi, N., Hosokawa, Y., Kanaya, F. Will Preoperative Atrophy and Fatty Degeneration of the Shoulder Muscles Improve after Rotator Cuff Repair in Patients with Massive Rotator Cuff Tears. Advances in Orthopedics. 2012, 195876 (2012).
  34. Silver, F. H., Freeman, J. W., Seehra, G. P. Collagen self-assembly and the development of tendon mechanical properties. Journal of Biomechanics. 36, 1529-1553 (2003).
  35. Schneppendahl, J., et al. Initial stability of two different adhesives compared to suture repair for acute Achilles tendon rupture–a biomechanical evaluation. International Orthopaedics. 36, 627-632 (2012).
  36. Herbort, M., et al. Biomechanical comparison of the primary stability of suturing Achilles tendon rupture: a cadaver study of Bunnell and Kessler techniques under cyclic loading conditions. Archives of Orthopaedic and Trauma Surgery. 128, 1273-1277 (2008).
  37. Piskin, A., et al. Tendon repair with the strengthened modified Kessler, modified Kessler, and Savage suture techniques: a biomechanical comparison. Acta Orthopaedica et Traumatologica Turcica. 41, 238-243 (2007).
  38. de Wit, T., Walbeehm, E. T., Hovius, S. E., McGrouther, D. A. The mechanical interaction between three geometric types of nylon core suture and a running epitenon suture in repair of porcine flexor tendons. The Journal of Hand Surgery, European Volume. 38, 788-794 (2013).
  39. Trail, I. A., Powell, E. S., Noble, J. The mechanical strength of various suture techniques. Journal of Hand Surgery. 17, 89-91 (1992).
  40. Wong, J. K., Peck, F. Improving results of flexor tendon repair and rehabilitation. Plastic and Reconstructive Surgery. 134, 913-925 (2014).
  41. Amis, A. A. Absorbable sutures in tendon repair. Journal of Hand Surgery. 21, 286 (1996).
  42. Faggioni, R., de Courten, C. Short and long-term advantages and disadvantages of prolene monofilament sutures in penetrating keratoplasty. Klinische Monatsblatter fur Augenheilkunde. 200, 395-397 (1992).
  43. Wong, J. K., Cerovac, S., Ferguson, M. W., McGrouther, D. A. The cellular effect of a single interrupted suture on tendon. Journal of Hand Surgery. 31, 358-367 (2006).
  44. Savage, R., Risitano, G. Flexor tendon repair using a “six strand” method of repair and early active mobilisation. Journal of Hand Surgery. 14, 396-399 (1989).
  45. Okubo, H., Kusano, N., Kinjo, M., Kanaya, F. Influence of different length of core suture purchase among suture row on the strength of 6-strand tendon repairs. Hand Surgery. 20, 19-24 (2015).
  46. Noguchi, M., Seiler, J. G., Gelberman, R. H., Sofranko, R. A., Woo, S. L. In vitro biomechanical analysis of suture methods for flexor tendon repair. Journal of Orthopaedic Research. 11, 603-611 (1993).
  47. Aoki, M., Pruitt, D. L., Kubota, H., Manske, P. R. Effect of suture knots on tensile strength of repaired canine flexor tendons. Journal of Hand Surgery. 20, 72-75 (1995).
  48. Pruitt, D. L., Aoki, M., Manske, P. R. Effect of suture knot location on tensile strength after flexor tendon repair. The Journal of Hand Surgery. 21, 969-973 (1996).
  49. Khor, W. S., et al. Improving Outcomes in Tendon Repair: A Critical Look at the Evidence for Flexor Tendon Repair and Rehabilitation. Plastic and Reconstructive Surgery. 138, 1045-1058 (2016).
  50. Strickland, J. W. Flexor Tendon Injuries: I. Foundations of Treatment. The Journal of the American Academy of Orthopaedic Surgeons. 3, 44-54 (1995).
  51. Mashadi, Z. B., Amis, A. A. Strength of the suture in the epitenon and within the tendon fibres: development of stronger peripheral suture technique. Journal of Hand Surgery. 17, 172-175 (1992).
  52. Wade, P. J., Muir, I. F., Hutcheon, L. L. Primary flexor tendon repair: the mechanical limitations of the modified Kessler technique. Journal of Hand Surgery. 11, 71-76 (1986).
  53. Wade, P. J., Wetherell, R. G., Amis, A. A. Flexor tendon repair: significant gain in strength from the Halsted peripheral suture technique. Journal of Hand Surgery. 14, 232-235 (1989).
  54. Silfverskiold, K. L., May, E. J. Gap formation after flexor tendon repair in zone II. Results with a new controlled motion programme. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery / Nordisk Plastikkirurgisk forening [and] Nordisk Klubb for Handkirurgi. 27, 263-268 (1993).
  55. Silfverskiold, K. L., May, E. J., Tornvall, A. H. Gap formation during controlled motion after flexor tendon repair in zone II: a prospective clinical study. The Journal of Hand Surgery. 17, 539-546 (1992).
  56. Silfverskiold, K. L., May, E. J. Flexor tendon repair in zone II with a new suture technique and an early mobilization program combining passive and active flexion. The Journal of Hand Surgery. 19, 53-60 (1994).
  57. Pennington, D. G. Atraumatic retrieval of the proximal end of a severed digital flexor tendon. Plastic and Reconstructive Surgery. 60, 468-469 (1977).
  58. Lin, G. T., An, K. N., Amadio, P. C., Cooney, W. P. Biomechanical studies of running suture for flexor tendon repair in dogs. The Journal of Hand Surgery. 13, 553-558 (1988).
  59. Papandrea, R., Seitz, W. H., Shapiro, P., Borden, B. Biomechanical and clinical evaluation of the epitenon-first technique of flexor tendon repair. The Journal of Hand Surgery. 20, 261-266 (1995).

Play Video

Diesen Artikel zitieren
Sawadkar, P., Wong, J., Mudera, V. A Novel Tenorrhaphy Suture Technique with Tissue Engineered Collagen Graft to Repair Large Tendon Defects. J. Vis. Exp. (178), e57696, doi:10.3791/57696 (2021).

View Video