Summary

In Situ Chemotaxis Assay to Examine Microbial Behavior in Aquatic Ecosystems

Published: May 05, 2020
doi:

Summary

Presented here is the protocol for an in situ chemotaxis assay, a recently developed microfluidic device that enables studies of microbial behavior directly in the environment.

Abstract

Microbial behaviors, such as motility and chemotaxis (the ability of a cell to alter its movement in response to a chemical gradient), are widespread across the bacterial and archaeal domains. Chemotaxis can result in substantial resource acquisition advantages in heterogeneous environments. It also plays a crucial role in symbiotic interactions, disease, and global processes, such as biogeochemical cycling. However, current techniques restrict chemotaxis research to the laboratory and are not easily applicable in the field. Presented here is a step-by-step protocol for the deployment of the in situ chemotaxis assay (ISCA), a device that enables robust interrogation of microbial chemotaxis directly in the natural environment. The ISCA is a microfluidic device consisting of a 20 well array, in which chemicals of interest can be loaded. Once deployed in aqueous environments, chemicals diffuse out of the wells, creating concentration gradients that microbes sense and respond to by swimming into the wells via chemotaxis. The well contents can then be sampled and used to (1) quantify strength of the chemotactic responses to specific compounds through flow cytometry, (2) isolate and culture responsive microorganisms, and (3) characterize the identity and genomic potential of the responding populations through molecular techniques. The ISCA is a flexible platform that can be deployed in any system with an aqueous phase, including marine, freshwater, and soil environments.

Introduction

Diverse microorganisms use motility and chemotaxis to exploit patchy nutrient environments, find hosts, or avoid deleterious conditions1,2,3. These microbial behaviours can in turn influence rates of chemical transformation4 and promote symbiotic partnerships across terrestrial, freshwater, and marine ecosystems2,5.

Chemotaxis has been extensively studied under laboratory conditions for the past 60 years6. The first quantitative method to study chemotaxis, the capillary assay, involves a capillary tube filled with a putative chemoattractant immersed in a suspension of bacteria6. Diffusion of the chemical out of the tube creates a chemical gradient, and chemotactic bacteria respond to this gradient by migrating into the tube7. Since the development of the capillary assay, still widely used today, many other techniques have been developed to study chemotaxis under increasingly controlled physical/chemical conditions, with the most recent involving the use of microfluidics8,9,10.

Microfluidics, together with high-speed video microscopy, enables tracking of the behavior of single cells in response to carefully controlled gradients. Although these techniques have vastly improved our understanding of chemotaxis, they have been restricted to laboratory use and do not translate easily to field deployment in environmental systems. As a consequence, the capacity of natural communities of bacteria to use chemotaxis within natural ecosystems has not been examined; thus, current understanding of the potential ecological importance of chemotaxis is biased toward artificial laboratory conditions and a limited number of laboratory-cultured bacterial isolates. The recently developed ISCA overcomes these limitations11.

The ISCA builds on the general principle of the capillary assay; however, it makes use of modern microfabrication techniques to deliver a highly replicated, easily deployable experimental platform for the quantification of chemotaxis toward compounds of interest in the natural environment. It also allows identification and characterization of chemotactic microorganisms by direct isolation or molecular techniques. While the first working device was self-fabricated and constructed of glass and PDMS11, the latest injection-molded version is composed of polycarbonate, using a highly standardized fabrication procedure (for interest in the latest version of the device, the corresponding authors can be contacted).

The ISCA is credit card-sized and consists of 20 wells distributed in a 5 x 4 well array, each linked to the external aquatic environment by a small port (800 µm in diameter; Figure 1). Putative chemoattractants loaded into the wells diffuse into the environment via the port, and chemotactic microbes respond by swimming through the port into the well. As many factors can influence the outcome of an ISCA experiment in the natural environment, this step-by-step protocol will help new users overcome potential hurdles and facilitate effective deployments.

Protocol

We recommend executing section 1 prior to field experiments to optimize results. 1. Laboratory optimization NOTE: The volumes described in the optimization procedure are sufficient for a single ISCA (composed of 20 wells). Preparation of the chemical of interest NOTE: The optimal concentration for each chemoattractant often needs to be determined under laboratory conditions prior to field deployments. The chemical concentration field will decrease…

Representative Results

This section presents laboratory results using the ISCA to test the chemotactic response of marine microbes to a concentration range of glutamine, an amino acid known to attract soil bacteria14. The concentration of glutamine that elicited the strongest chemotactic response in the laboratory tests was used to perform a chemotaxis assay in the marine environment. To perform the laboratory tests, seawater communities sampled from coastal water in Sydney, Australia, were e…

Discussion

At the scale of aquatic microorganisms, the environment is far from homogenous and is often characterized by physical/chemical gradients that structure microbial communities1,15. The capacity of motile microorganisms to use behavior (i.e., chemotaxis) facilitates foraging within these heterogeneous microenvironments1. Studying chemotaxis directly in the environment has the potential to identify important interspecific interactions and chem…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

This research was funded in part by the Gordon and Betty Moore Foundation Marine Microbiology Initiative, through grant GBMF3801 to J.R.S. and R.S., and an Investigator Award (GBMF3783) to R.S., as well as an Australian Research Council Fellowship (DE160100636) to J.B.R., an award from the Simons Foundation to B.S.L. (594111), and a grant from the Simons Foundation (542395) to R.S. as part of the Principles of Microbial Ecosystems (PriME) Collaborative.

Materials

Acrylic glue Evonik 1133 Acrifix 1S 0116
Acrylic sheet McMaster-Carr 8505K725 Or different company
Adhesive tape Scotch 3M 810 Scotch Magic tape
Autoclave Systec D-200 Or different company
Benchtop centrifuge Fisher Scientific 75002451 Or different company
Bungee cord Paracord Planet 667569184000 Or different company
Centrifuge tube – 2 mL Sigma Aldrich BR780546-500EA Eppendorf tube
Conical centrifuge tube – 15 mL Fisher Scientific 11507411 Falcon tube
Conical centrifuge tube – 50 mL Fisher Scientific 10788561 Falcon tube
Deployment arm Irwin 1964719 Or different company
Deployment enclosure plug Fisher Scientific 21-236-4 See alternatives in manuscript
Disposable wipers Kimtech – Fisher Scientific 06-666 Kimwipes
Flow cytometer Beckman C09756 CYTOFlex
Glutaraldehyde 25% Sigma Aldrich G5882 Or different company
Green fluorescent dye Sigma Aldrich S9430 SYBR Green I – 1:10,000 final dilution
Hydrophilic GP filter cartridge – 0.2 µm Merck C3235 Sterivex filter
In Situ Chemotaxis Assay (ISCA) Contact corresponding authors
Laser cutter Epilog Laser Fusion pro 32 Or different company
Luria Bertani Broth Sigma Aldrich L3022 Or different company
Marine Broth 2216 VWR 90004-006 Difco
Nylon slotted flat head screws McMaster-Carr 92929A243 M 2 × 4 × 8 mm
Pipette set Fisher Scientific 05-403-151 Or different company
Pipette tips – 1 mL Fisher Scientific 21-236-2A Or different company
Pipette tips – 20 µL Fisher Scientific 21-236-4 Or different company
Pipette tips – 200 µL Fisher Scientific 21-236-1 Or different company
Sea salt Sigma Aldrich S9883 For artificial seawater
Serological pipette – 50 mL Sigma Aldrich SIAL1490-100EA Or different company
Syringe filter – 0.02 µm Whatman WHA68091002 Anatop filter
Syringe filter – 0.2 µm Fisher Scientific 10695211 Or different company
Syringe needle 27G Henke Sass Wolf 4710004020 0.4 × 12 mm
Syringes – 1 mL Codau 329650 Insulin Luer U-100
Syringes – 10 mL BD 303134 Or different company
Syringes – 50 mL BD 15899152 Or different company
Tube rack – 15 mL Thomas Scientific 1159V80 Or different company
Tube rack – 50 mL Thomas Scientific 1159V80 Or different company
Uncoated High-Speed Steel General Purpose Tap McMaster-Carr 8305A77 Or different company
Vacuum filter – 0.2 µm Merck SCGPS05RE Steritop filter

Referenzen

  1. Stocker, R. Marine microbes see a sea of gradients. Science. 338, 628-633 (2012).
  2. Raina, J. B., Fernandez, V., Lambert, B., Stocker, R., Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nature Reviews Microbiology. 17, 284-294 (2019).
  3. Chet, I., Asketh, P., Mitchell, R. Repulsion of bacteria from marine surfaces. Applied Microbiology. 30, 1043-1045 (1975).
  4. Smriga, S., Fernandez, V. I., Mitchell, J. G., Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. PNAS. 113, 1576-1581 (2016).
  5. Matilla, M., Krell, T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiology Reviews. 42, (2018).
  6. Adler, J. Chemotaxis in bacteria. Science. 153, 708-716 (1966).
  7. Adler, J., Dahl, M. M. A method for measuring the motility of bacteria and for comparing random and non-random motility. Journal of General Microbiology. 46, 161-173 (1967).
  8. Ahmed, T., Shimizu, T. S., Stocker, R. Microfluidics for bacterial chemotaxis. Integrative Biology. 2, 604-629 (2010).
  9. Hol, F. J. H., Dekker, C. Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science. 346, 1251821 (2014).
  10. Rusconi, R., Garren, M., Stocker, R. Microfluidics expanding the frontiers of microbial ecology. Annual Review of Biophysics. 43, 65-91 (2014).
  11. Lambert, B. S., et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nature Microbiology. 2, 1344-1349 (2017).
  12. Marie, D., Partensky, F., Jacquet, S., Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied Environmental Microbiology. 63, 186-193 (1997).
  13. Rinke, C., et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nature Protocols. 9, 1038-1048 (2014).
  14. Gaworzewska, E. T., Carlile, M. J. Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants. Microbiology. , (1982).
  15. Walker, T. S., Bais, H. P., Grotewold, E., Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiology. 132, 44-51 (2003).
check_url/de/61062?article_type=t

Play Video

Diesen Artikel zitieren
Clerc, E. E., Raina, J., Lambert, B. S., Seymour, J., Stocker, R. In Situ Chemotaxis Assay to Examine Microbial Behavior in Aquatic Ecosystems. J. Vis. Exp. (159), e61062, doi:10.3791/61062 (2020).

View Video