Summary

眼部微血管血管生成前维沃胆球状芽分析

Published: August 06, 2020
doi:

Summary

该协议提供胆瘤发芽测定,微血管增殖的外体模型。这种测定可用于评估增殖胆小血管所涉及的途径,并评估使用野生型和转基因小鼠组织的药物治疗。

Abstract

病理胆瘤血管生成,年龄相关的黄斑变性的显著特征,导致视力障碍和失明。使用人类视网膜微血管内皮细胞(HRMECs)或分离原发性视网膜EC进行内皮细胞增殖检测,在体外模型中广泛使用,用于研究视网膜血管生成。然而,分离纯杂音视网膜内皮细胞在技术上具有挑战性,视网膜ECs可能有不同的增殖反应比胆状内皮细胞和不同的细胞/细胞相互作用。开发了一种高度可重复的外体胆瘤发芽测定,作为胆球微血管增殖的模型。该模型包括胆道血管(EC、巨噬细胞、心状物)和视网膜色素上皮(RPE)之间的相互作用。小鼠RPE/胆状/细胞外植在生长因子减少基膜提取物(BME)(第0天)中分离和孵育。中等每隔一天改变一次,胆瘤发芽在第6天被量化。使用倒置相显微镜拍摄单个胆瘤外植的图像,并使用本实验室开发的 ImageJ 软件半自动宏插件对发芽区域进行量化。这种可重复的外体胆瘤发芽测定可用于评估化合物的潜在治疗和微血管疾病研究,以评估使用野生型和转基因小鼠组织参与胆小血管增殖的途径。

Introduction

胆血管生成失调与新血管年龄相关的黄斑变性(AMD)1。胆小球是视网膜色素上皮(RPE)下的微血管床。研究表明,胆瘤中血流量的减少与AMD2的进展有关。血管内皮、RPE、巨噬细胞、心肺和其他细胞之间的复杂关系是组织3、4、5的平衡。因此,可重复的测定建模对新血管AMD的研究至关重要。

前活体血管生成测定和体外内皮细胞培养可以补充对体内微血管行为的研究,用于测试新药和机制学研究。内皮细胞,如人类视网膜微血管内皮细胞(HRMEC),人类脐带静脉内皮细胞(HUVEC),分离的原兽脑或视网膜ECs,常用于体外研究,用于眼血管生成研究6,7,8。特别是HRMEC已被广泛用作体外胆状新血管化(CNV)9的模型,通过评估内皮增殖、迁移、管状形成和血管渗漏来评估干预6、10。然而,由于在胆道中与其他细胞类型缺乏相互作用,并且由于这些测定中使用的大多数EC并非源自胆瘤,培养中的EC作为CNV的模型受到限制。在培养中,小鼠巧克力球状电子能难以分离和维护。

大动脉环测定被广泛用作大血管增殖的模型。来自大动脉外植的血管芽包括 ES、周食和巨噬细胞11。大音环测定模型大血管发生12,13,14。然而,它作为胆囊新血管化的模型有局限性,因为大动脉环是缺乏特征的胆囊微血管环境的大血管组织,而来自大型血管的芽可能与涉及微血管病理学的毛细管网络的芽不同。最近,一个小组发表了一个前维维视网膜测定15,16。虽然,它适用于视网膜新血管疾病,但它不像在AMD中所看到的那样适合胆状新血管化。

利用小鼠RPE、胆球和胆碱外植组织进行胆瘤发芽测定,以更好地模拟CNV。组织可以很容易地从小鼠(或其他物种)的眼睛17分离。这种测定允许重复评估药理化合物的亲血管原位和抗血管原位,并评估特定途径在胆道新血管化中的作用,利用转基因小鼠和对控组18。这种胆瘤发芽测定已在许多后续出版物9,10,18,19,20被引用。在这里,演示了使用这种测定的方法。

Protocol

所述的所有动物实验都得到波士顿儿童医院机构动物护理和使用委员会的批准(ARCH协议号19-04-3913R)。 1. 准备 加入5 mL的青霉素/链霉素(10000 U/mL)和5 mL和10 mL的商用补充剂到500 mL的完整经典介质与血清。最初为 50 mL 的介质的 Aliquot。注:请勿将任何介质退回库存,以免受到污染。 在冰上放一完全经典介质。 使用 70% 乙醇清洁解剖显微镜、钳子和剪?…

Representative Results

每天胆小球发芽生长的比较 我们解剖了带sclera的胆小球,嵌入到BME中,并培养了6天(图1)。第3天至第6天C57BL/6J小鼠的胆瘤发芽用显微镜检查,用SWIFT-Choroid对图像J中的半自动定量方法进行量化。在一个代表性的案例中,第3天(图3A)的胆状发芽区(从外植延伸的容器,不包括外植本身)为0.38毫米2(图3A),?…

Discussion

胆瘤发芽分析辅助研究的新血管AMD9,10,18,19,20。胆龙外植可以从老鼠以及大鼠和人类17,21分离。胆道外植包括ECs,巨噬细胞,和心状体17。在此测定胆道DC与相邻细胞(如RPE细胞)之间的相互作用,有助于阐?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作得到了曼佩铃木糖尿病基金会(YT)、波士顿儿童医院 OFD/BTREC/CTREC 教师职业发展补助金、波士顿儿童医院眼科基金会、BCH 试点奖、BCH 曼顿中心奖学金和小长颈鹿基金会 (ZF)、德国研究基金会 (DFG; 到 BC [CA1940/1-1]), NIH R24EY024868, EY017017, R01717-13S1, EY030904-01, BCH IDDRC (1U54HD090255), 马萨诸塞州狮子眼基金会 (LEHS).

Materials

AnaSed (Xylazine) AKORN 59339-110-20
Basal membrane extract (BME) Matrigel BD Biosciences 354230
Cell culture dish NEST 704001 10cm
Complete classic medium with serum and CultureBoost Cell systems 4Z0-500
Ethyl alcohol 200 Proof Pharmco 111000200 use for 70%
Kimwipes Kimberly-Clark 06-666
Microscope ZEISS Axio Observer Z1
Penicillin/Streptomycin GIBCO 15140 10000 U/mL
Tissue culture plate (24-well) Olympus 25-107
VetaKet CIII (Ketamine) AKORN 59399-114-10

Referenzen

  1. Zarbin, M. A. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol. 122 (4), 598-614 (2004).
  2. Pemp, B., Schmetterer, L. Ocular blood flow in diabetes and age-related macular degeneration. Canadian Journal of Ophthalmology. 43 (3), 295-301 (2008).
  3. Murakami, Y., Ishikawa, K., Nakao, S., Sonoda, K. H. Innate immune response in retinal homeostasis and inflammatory disorders. Progress in Retinal and Eye Research. 74, 100778 (2020).
  4. Fu, Z., et al. Dyslipidemia in retinal metabolic disorders. EMBO Molecular Medicine. 11 (10), 10473 (2019).
  5. Daruich, A., et al. Mechanisms of macular edema: Beyond the surface. Progress in Retinal and Eye Research. 63, 20-68 (2018).
  6. Tomita, Y., et al. Long-Acting FGF21 Inhibits Retinal Vascular Leakage in In Vivo and In Vitro Models. International Journal of Molecular Sciences. 21 (4), 21041188 (2020).
  7. Maisto, R., et al. ARPE-19-derived VEGF-containing exosomes promote neovascularization in HUVEC: the role of the melanocortin receptor 5. Cell Cycle. 18 (4), 413-424 (2019).
  8. Mazzoni, J., et al. The Wnt Inhibitor Apcdd1 Coordinates Vascular Remodeling and Barrier Maturation of Retinal Blood Vessels. Neuron. 96 (5), 1055-1069 (2017).
  9. Fu, Z., et al. Adiponectin Mediates Dietary Omega-3 Long-Chain Polyunsaturated Fatty Acid Protection Against Choroidal Neovascularization in Mice. Investigative Ophthalmology and Visual Sciences. 58 (10), 3862-3870 (2017).
  10. Gong, Y., et al. Cytochrome P450 Oxidase 2C Inhibition Adds to omega-3 Long-Chain Polyunsaturated Fatty Acids Protection Against Retinal and Choroidal Neovascularization. Arteriosclerosis, Thrombosis and Vascular Biology. 36 (9), 1919-1927 (2016).
  11. Nicosia, R. F., Zorzi, P., Ligresti, G., Morishita, A., Aplin, A. C. Paracrine regulation of angiogenesis by different cell types in the aorta ring model. International Journal of Developmental Biology. 55 (4-5), 447-453 (2011).
  12. Bellacen, K., Lewis, E. C. Aortic ring assay. Journal of Visulaized Experiments. (33), e1564 (2009).
  13. Masson, V. V., et al. Mouse Aortic Ring Assay: A New Approach of the Molecular Genetics of Angiogenesis. Biological Procedures Online. 4, 24-31 (2002).
  14. Katakia, Y. T., et al. Ex vivo model for studying endothelial tip cells: Revisiting the classical aortic-ring assay. Microvascular Research. 128, 103939 (2020).
  15. Rezzola, S., et al. In vitro and ex vivo retina angiogenesis assays. Angiogenesis. 17 (3), 429-442 (2014).
  16. Rezzola, S., et al. A novel ex vivo murine retina angiogenesis (EMRA) assay. Experimental Eye Research. 112, 51-56 (2013).
  17. Shao, Z., et al. Choroid sprouting assay: an ex vivo model of microvascular angiogenesis. PLoS One. 8 (7), 69552 (2013).
  18. Tomita, Y., et al. Free fatty acid receptor 4 activation protects against choroidal neovascularization in mice. Angiogenesis. 23, 385-394 (2020).
  19. Li, J., et al. Endothelial TWIST1 promotes pathological ocular angiogenesis. Investigative Ophthalmology and Vision Science. 55 (12), 8267-8277 (2014).
  20. Liu, C. H., et al. Endothelial microRNA-150 is an intrinsic suppressor of pathologic ocular neovascularization. Proceedings of the National Academy of Science U. S. A. 112 (39), 12163-12168 (2015).
  21. Zhou, Q., et al. LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus. Elife. 8, 40470 (2019).
  22. Kobayashi, S., Fukuta, M., Kontani, H., Yanagita, S., Kimura, I. A quantitative assay for angiogenesis of cultured choroidal tissues in streptozotocin-diabetic Wistar and spontaneously diabetic GK rats. Japanese Journal of Pharmacology. 78 (4), 471-478 (1998).
  23. Kobayashi, S., et al. Inhibitory effects of tetrandrine and related synthetic compounds on angiogenesis in streptozotocin-diabetic rodents. Biological and Pharmaceutical Bulletin. 22 (4), 360-365 (1999).
  24. Kobayashi, S., Shinohara, H., Tsuneki, H., Nagai, R., Horiuchi, S. N(epsilon)-(carboxymethyl)lysine proliferated CD34(+) cells from rat choroidal explant in culture. Biological and Pharmaceutical Bulletin. 27 (9), 1382-1387 (2004).
  25. Kobayashi, S., et al. Overproduction of N(epsilon)-(carboxymethyl)lysine-induced neovascularization in cultured choroidal explant of streptozotocin-diabetic rat. Biological and Pharmaceutical Bulletin. 27 (10), 1565-1571 (2004).
  26. Bergers, G., Song, S. The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology. 7 (4), 452-464 (2005).
  27. Browning, A. C., Stewart, E. A., Amoaku, W. M. Reply to: Phenotypic plasticity of human umbilical vein endothelial cells. British Journal of Ophthalmology. 96 (9), 1275-1276 (2012).

Play Video

Diesen Artikel zitieren
Tomita, Y., Shao, Z., Cakir, B., Kotoda, Y., Fu, Z., Smith, L. E. An Ex Vivo Choroid Sprouting Assay of Ocular Microvascular Angiogenesis. J. Vis. Exp. (162), e61677, doi:10.3791/61677 (2020).

View Video