Summary

Quantifying the Effects of Antimicrobials on In vitro Biofilm Architecture using COMSTAT Software

Published: December 14, 2020
doi:

Summary

Antimicrobial-induced changes to Pseudomonas aeruginosa biofilm architecture differ among clinical isolates cultured from patients with cystic fibrosis and chronic pulmonary infection. Following confocal microscopy, COMSTAT software can be utilized to quantify variations in biofilm architecture (e.g., surface area, thickness, biomass) for individual isolates to assess the efficacy of anti-infective agents.

Abstract

Biofilms are aggregates of microorganisms that rely on a self-produced matrix of extracellular polymeric substance for protection and structural integrity. The nosocomial pathogen, Pseudomonas aeruginosa, is known to adopt a biofilm mode of growth, causing chronic pulmonary infection in patients with cystic fibrosis (CF). The computer program, COMSTAT, is a useful tool for quantifying antimicrobial-induced changes in P. aeruginosa biofilm architecture by extracting data from three-dimensional confocal images. However, standardized operation of the software is less commonly addressed, which is important for optimal reporting of biofilm behavior and cross-center comparison. Thus, the aim of this protocol is to provide a simple and reproducible framework for quantifying in vitro biofilm structures under varying antimicrobial conditions via COMSTAT. The technique is modeled using a CF P. aeruginosa isolate, grown in the form of biofilm replicates, and exposed to tobramycin and the anti-Psl monoclonal antibody, Psl0096. The step-by-step approach aims to reduce user ambiguity and minimize the chance of overlooking crucial image-processing steps. Specifically, the protocol emphasizes the elimination of subjective variations associated with the manual operation of COMSTAT, including image segmentation and the selection of appropriate quantitative analysis functions. Although this method requires users to spend additional time processing confocal images prior to running COMSTAT, it helps minimize misrepresented biofilm heterogenicity in automated outputs.

Introduction

Biofilms are aggregates of microorganisms oriented in a matrix of self-produced extracellular polymeric substances (EPS). The EPS matrix is very complex, consisting primarily of bacterial cells, water, proteins, polysaccharides, lipids, and nucleic acids1, all of which make biofilms distinctly different from free-living planktonic cells. Biofilm EPS are adherent to each other and various surfaces. The EPS matrix has properties that mediate cell-to-cell exchange of metabolites, genetic material, and compounds used for intercellular signaling and defense2. These properties collectively provide biofilms structural integrity and protection against external stressors, contributing to immune evasion and antimicrobial resistance3.

Pseudomonas aeruginosa is a well-recognized nosocomial pathogen, known to adopt an evasive biofilm growth strategy in response to antimicrobials. A prime example of this occurs in patients with the recessive genetic disorder, cystic fibrosis (CF). Biofilms play a pivotal role in the development of antimicrobial-resistant P. aeruginosa4 and permit the establishment of chronic pulmonary infection in patients with CF, causing accelerated decline in lung function and premature mortality5. Hence, in vitro biofilm studies are performed to test the efficacy of antibiotics and new anti-infective agents against P. aeruginosa isolates obtained from patients with CF6,7. Following biofilm formation, antimicrobials are applied externally to the structure, and confocal laser scanning microscopy (CLSM) is used to generate high-resolution, three-dimensional reconstructions of biofilm segments. It is common practice to then use the computer software, COMSTAT, as a plugin to ImageJ, to quantify changes in biofilm architecture8,9,10,11.

Although COMSTAT is useful for quantifying biofilm structure, the reproducibility and standardization of image analysis is less commonly addressed. For example, the image-processing procedure, performed prior to running COMSTAT, is objective, but contains an element of subjectivity when setting image thresholds12,13. In a similar manner, the COMSTAT program allows the operator to choose from basic to advanced conditions and parameters for image segmentation as well as ten quantitative analysis functions (e.g., thickness distribution, surface area, biomass, dimensionless roughness coefficient). The multitude of user options, compounded with varying operator expertise levels, may result in misguided reporting of biofilm behavior.

Thus, the goal of this protocol is to present a relatively simple method for the quantitative comparison of in vitro biofilm structures using COMSTAT. Herein, three-dimensional images of biofilm segments from a CF P. aeruginosa isolate are captured via CLSM using the chambered coverglass model14—an established technique used to perform reproducible in vitro biofilm experiments. Utilizing COMSTAT as a plugin to ImageJ, this method allows for researchers to quantitatively identify changes in biofilm architecture in the presence of antimicrobials under varying conditions. Overall, this method aims to eliminate subjective variations associated with the manual operation of COMSTAT, thereby facilitating the standardization of protocols across centers.

Protocol

1. Bacterial isolate collection Obtain P. aeruginosa isolates from a cohort of pediatric patients with CF undergoing eradication treatment with inhaled tobramycin at SickKids (Toronto). Freeze isolates at -80 °C in glycerol citrate and sub-culture at least three times prior to use. 2. In vitro biofilm formation NOTE: Use a chambered coverglass method1 for in vitro biofilm formation with modific…

Representative Results

A P. aeruginosa isolate cultured from an infected patient with CF is used to demonstrate the strengths of this approach in accurately quantifying antimicrobial-induced changes in in vitro biofilm architecture. The overall workflow of this model is represented in Figure 1. The image-processing and COMSTAT analysis procedure in ImageJ is shown in Figure 2. A simple histogram thresholding approach for image segmentation in ImageJ, a…

Discussion

There is no prescribed method for quantitatively comparing three-dimensional images of in vitro biofilm structures, and procedures described in this context are often difficult to standardize due to inter-operator variability20. Thus, this protocol offers a simple and reproducible framework for COMSTAT applications seeking to quantify changes in in vitro biofilm architecture under varying antimicrobial conditions. The strengths of this technique are modeled using a CF P. aeru…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge Cystic Fibrosis Foundation for providing funding for this research.

Materials

Anti-Psl mAb, Psl0096 Medimmune
Blood Agar (TSA with 5 % Sheep Blood) Medium Fisher Scientific R01200
Eight-well Chambered Coverglass w/ non-removable wells Thermo Fisher Scientific 155411
Invitrogen SYTO 9 Green Fluorescent Nucleic Acid Stain Thermo Fisher Scientific S34854
LB BROTH (LENNOX), Liquid Autoclave Sterilized BioShop Canada LBL666
Tobramycin, 900 µg/mg Alfa Aesar by Thermo Fisher Scientific J66040 It is recommended to perform a minimal inhibitory concentration (MIC) test for every batch made to ensure quality control of antimicrobial potency
Quorum Volocity 6.3 Quorum Technologies Image analysis software

Referenzen

  1. Flemming, H. C., Wingender, J. The biofilm matrix. Nature Reviews Microbiology. 8, 623-633 (2010).
  2. Flemming, H. C., et al. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology. 14, 563-575 (2016).
  3. Rybtke, M., Hultqvist, L. D., Givskov, M., Tolker-Nielsen, T. Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. Journal of Molecular Biology. 427, 3628-3645 (2015).
  4. Wendel, A. F., Ressina, S., Kolbe-Busch, S., Pfeffer, K., MacKenzie, C. R. Species diversity of environmental GIM-1-producing bacteria collected during a long-term outbreak. Applied and Environmental Microbiology. 82, 3605-3610 (2016).
  5. Costerton, J. W., Stewart, P. S., Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science. 284, 1318-1322 (1999).
  6. Powell, L. C., et al. Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. NPJ Biofilms and Microbiomes. 4, 1-10 (2018).
  7. Ciofu, O., Tolker-Nielsen, T., Jensen, P. &. #. 2. 1. 6. ;., Wang, H., Høiby, N. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Advanced Drug Delivery Reviews. 85, 7-23 (2015).
  8. Landry, R. M., An, D., Hupp, J. T., Singh, P. K., Parsek, M. R. Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Molecular Microbiology. 59, 142-151 (2006).
  9. Beaudoin, T., et al. Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. NPJ Biofilms and Microbiomes. 3, 1-9 (2017).
  10. Rojo-Molinero, E., et al. Sequential treatment of biofilms with aztreonam and tobramycin is a novel strategy for combating Pseudomonas aeruginosa chronic respiratory infections. Antimicrobial Agents and Chemotherapy. 60, 2912-2922 (2016).
  11. Hentzer, M., et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. Journal of Bacteriology. 183, 5395-5401 (2001).
  12. Tolker-Nielsen, T., Sternberg, C. Growing and analyzing biofilms in flow chambers. Current Protocols in Microbiology. 21, 1-17 (2011).
  13. Luo, T. L., et al. A Sensitive thresholding method for confocal laser scanning microscope image stacks of microbial biofilms. Scientific Reports. 8, 1-14 (2018).
  14. Beaudoin, T., Kennedy, S., Yau, Y., Waters, V. Visualizing the effects of sputum on biofilm development using a chambered coverglass model. Journal of Visualized Experiments. (118), e54819 (2016).
  15. DiGiandomenico, A., et al. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. Journal of Experimental Medicine. 209, 1273-1287 (2012).
  16. Heydorn, A., et al. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 146, 2395-2407 (2000).
  17. Vorregaard, M. Comstat2 – a modern 3D image analysis environment for biofilms, in Informatics and Mathematical Modelling. Technical University of Denmark. , (2008).
  18. Hashemi, M. A., Khaddour, G., François, B., Massart, T. J., Salager, S. A tomographic imagery segmentation methodology for three-phase geomaterials based on simultaneous region growing. Acta Geotechnica. 9, 831-846 (2014).
  19. Rogowska, J. Overview and fundamentals of medical image segmentation. Handbook of Medical Image Processing and Analysis. , 73-90 (2009).
  20. Webb, D., et al. Assessing technician effects when extracting quantities from microscope images. Journal of Microbiological Methods. 53, 97-106 (2003).
  21. Azeredo, J., et al. Critical review on biofilm methods. Critical Reviews in Microbiology. 43, 313-351 (2017).
  22. Xavier, J. B., et al. Objective threshold selection procedure (OTS) for segmentation of scanning laser confocal microscope images. Journal of Microbiological Methods. 47, 169-180 (2001).
  23. Arena, E. T., et al. Quantitating the cell: turning images into numbers with ImageJ. Wiley Interdisciplinary Reviews: Developmental Biology. 6, 260 (2017).
  24. Daims, H., Wagner, M. Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis. Applied Microbiology and Biotechnology. 75, 237-248 (2007).
  25. Yerly, J., Hu, Y., Jones, S. M., Martinuzzi, R. J. A two-step procedure for automatic and accurate segmentation of volumetric CLSM biofilm images. Journal of Microbiological Methods. 70, 424-433 (2007).
  26. Lee, B., et al. Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Journal of Clinical Microbiology. 43, 5247-5255 (2005).
  27. Stapper, A. P., et al. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. Journal of Medical Microbiology. 53, 679-690 (2004).
  28. Reichhardt, C., Parsek, M. Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization. Frontiers in Microbiology. 10, 677 (2019).
  29. Yang, X., Beyenal, H., Harkin, G., Lewandowski, Z. Quantifying biofilm structure using image analysis. Journal of Microbiological Methods. 39, 109-119 (2000).
  30. Yang, X., Beyenal, H., Harkin, G., Lewandowski, Z. Evaluation of biofilm image thresholding methods. Water Research. 35, 1149-1158 (2001).
  31. Ross, S. S., et al. Quantification of confocal images of biofilms grown on irregular surfaces. Journal of Microbiological Methods. 100, 111-120 (2014).
  32. Ma, L., et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens. 5, (2009).
  33. Mah, T. F., et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 426, 306-310 (2003).
  34. Srinandan, C. S., Jadav, V., Cecilia, D., Nerurkar, A. S. Nutrients determine the spatial architecture of Paracoccus sp. biofilm. Biofouling. 26, 449-459 (2010).
  35. Ramos, I., Dietrich, L. E., Price-Whelan, A., Newman, D. K. Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Research in Microbiology. 161, 187-191 (2010).
  36. Ma, L., Jackson, K. D., Landry, R. M., Parsek, M. R., Wozniak, D. J. Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. Journal of Bacteriology. 188, 8213-8221 (2006).

Play Video

Diesen Artikel zitieren
Morris, A. J., Li, A., Jackson, L., Yau, Y. C. W., Waters, V. Quantifying the Effects of Antimicrobials on In vitro Biofilm Architecture using COMSTAT Software. J. Vis. Exp. (166), e61759, doi:10.3791/61759 (2020).

View Video