Summary

烧伤诱导的疼痛和小鼠抑郁样行为

Published: September 29, 2021
doi:

Summary

一个后爪的短暂性烫伤(65 °C ± 0.5 °C,3 s)降低了同侧冯弗雷丝刺激的阈值(g)并改变了步态模式。此外,烧伤在强制游泳测试中诱发抑郁样行为。

Abstract

烫水是老年人和年轻人烧伤的最常见原因。这是主要的临床挑战之一,因为低收入和中等收入国家的死亡率和后遗症很高。烧伤经常诱发强烈的自发性疼痛和持续性异常疼痛以及危及生命的问题。更重要的是,过度疼痛往往伴有抑郁症,这可能会显著降低生活质量。本文展示了如何开发一种动物模型来研究烧伤引起的疼痛和抑郁样行为。麻醉后,通过将小鼠的一只后爪浸入热水(65°C±0.5°C)中3s诱导烧伤。烧伤后每2天进行一次von Frey测试和自动步态分析。此外,使用强制游泳试验检查抑郁样行为,并进行旋转杆试验以区分烧伤后异常的运动功能。这项研究的主要目的是描述用于研究烧伤引起的疼痛和小鼠抑郁样行为的动物模型的发展。

Introduction

组织损伤,如烧伤和创伤,通常与急性疼痛同时发生有关。烧伤和创伤相关症状估计每年有1,80,000例死亡是由烧伤引起的 – 绝大多数发生在低收入和中等收入国家,来自不同类型烧伤1。根据一份全球报告,烧伤在儿童中很常见,约占住院患者的40%-60%23。这些特定的伤害甚至更严重,因为它们可能发生在日常生活中,例如煮沸或洗澡水45。虽然在大多数情况下,急性疼痛可以在从组织损伤中恢复后自发解决,但由于神经系统的异常变化67,它可能变成慢性疼痛。

最近,有人提出急性疼痛可以诱发抑郁情绪,慢性疼痛可以引起焦虑和抑郁891011。疼痛和抑郁的共存使患者更难治疗。抑郁症也倾向于增加疼痛敏感性,这很可能诱发更强烈的抑郁症和疼痛12。疼痛和抑郁症的并发症显示在外周炎症的动物模型中13141516。疼痛诱发的抑郁症的详细机制直到现在还不是很清楚17.因此,有必要开发更有效的烧伤治疗方法,以减轻副作用和症状。

因此,本研究旨在开发一种动物模型来研究烧伤引起的急性疼痛和小鼠抑郁样行为。为此,测量了烧伤相关的异常触觉敏感性,步态模式改变和抑郁样行为。此外,本研究还尝试使用非甾体抗炎药验证模型。

Protocol

所有实验方案均由韩国忠南国立大学动物护理和使用委员会审查和批准,然后根据国际疼痛研究协会18的伦理准则进行。 1.后爪烫伤的诱导 将体重为20-25g的雄性ICR小鼠置于光照和温控室(12/12小时光暗循环,22.5°C±2.5°C),湿度为40%-60%。注意:雄性和雌性小鼠都可用于此方案。 让动物自由接触食物和水,并在开始实验前适应环…

Representative Results

为了最大限度地减少动物的痛苦并减少根据三个Rs(替换,减少和改进)指南使用的动物数量,本研究的设计采用了最小数量的动物,用于收集通过初步实验建立的重要数据。在这项研究中,行为实验独立进行了两次,如下所示。步态分析,机械性异常和抑郁样行为测试与对照组(n = 5),烧伤(n = 7;载体对照;盐水)和烧伤+对乙酰氨基酚(n = 7)组一起进行。在轮状杆试验中,对照(n = 3),燃烧…

Discussion

烫伤是一种由加热的液体引起的热灼伤。有人认为,在大多数情况下会发生一度或二度烧伤,但长期接触热源可导致三度烧伤26。在本研究中,通过将小鼠的右后爪暴露在65°C的热水中3秒426来诱导烧伤。在烧伤的爪子中检测到组织损伤,其显示烧伤的常见症状,例如发红,皮肤剥落和肿胀(补充图14?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

本研究得到了忠南国立大学和韩国政府资助的韩国国家研究基金会(NRF-2019R1A6A3A01093963和NRF-2021R1F1A1062509)的支持。

Materials

1 mL syringe BD 307809
1.5 mL tube Axygen MCT-150-C
50 mL tube SPL 50050
Acetaminophen BioXtra, ≥99.0% Sigma-Aldrich A7085-100G Positive control (The analgesic agent, acetaminophen (200 mg/kg) was administered intraperitoneally once-daily for 7 days starting from the day of after burn injury (Only Burn + Acetaminophen group. (von-Frey test, gait analysis, and forced swimming test: Used for drug-dependent behavioral testing after burn injury), (Rota-rod test: It was used to investigate the motor and functional impairments of the drug in animals after burn injury).
Alfaxan multidose (Alfaxalone) JUROX Pty.Limited In this experiment, this material used for animal anesthesia, and was used as a positive control for experimentally treated drugs in the rota-rod test.
CatWalk automated gait analysis system Noldus CatWalk XT Gait analysis in freely walking rodents is used to study the changes in limb movement and positioning in models with sensory-motor dysfunction
OPTISHIELD (Cyclosporin ophthalmic ointment) Ashish Life Science In this experiment, this material was used for an ointment to prevent corneal drying after induction of anesthesia.
Plexiglass cylinder SCITECH KOREA custom made products Used in forced swimming test
Rota-rod system SCITECH KOREA Accelerating rota rod Used in the measurement of Normal Motor Function
von Frey filaments North Coast Medical NC12775 Used in the measurement of Mechanical Allodynia
Waterbath CHANGSHIN SCIENCE C-WBE Used in the burn injury induction

Referenzen

  1. Peck, M. D. Epidemiology of burns throughout the World. Part II: intentional burns in adults. Burns. 38 (5), 630-637 (2012).
  2. Tracy, L. M., Cleland, H. Pain assessment following burn injury in Australia and New Zealand: Variation in practice and its association on in-hospital outcomes. Australasian Emergency Care. 24 (1), 73-79 (2021).
  3. Montgomery, R. K. Pain management in burn injury. Critical Care Nursing Clinics of North America. 16 (1), 39-49 (2004).
  4. Kang, D. W., Choi, J. G. Bee venom reduces burn-induced pain via the suppression of peripheral and central substance P expression in mice. Journal of Veterinary Science. 22 (1), 9 (2021).
  5. Abdi, S., Zhou, Y. Management of pain after burn injury. Current Opinion in Anaesthesiology. 15 (5), 563-567 (2002).
  6. Ullrich, P. M., Askay, S. W. Pain, depression, and physical functioning following burn injury. Rehabilitation Psychology. 54 (2), 211-216 (2009).
  7. Patwa, S., Benson, C. A. Spinal cord motor neuron plasticity accompanies second-degree burn injury and chronic pain. Physiological Reports. 7 (23), 14288 (2019).
  8. Michaelides, A., Zis, P. Depression, anxiety and acute pain: links and management challenges. Postgraduate Medicine. 131 (7), 438-444 (2019).
  9. Doan, L., Manders, T., Wang, J. Neuroplasticity underlying the comorbidity of pain and depression. Neural Plasticity. 2015, 504691 (2015).
  10. Vachon-Presseau, E., Centeno, M. V. The emotional brain as a predictor and amplifier of chronic pain. Journal of Dental Research. 95 (6), 605-612 (2016).
  11. Apkarian, A. V., Baliki, M. N. Predicting transition to chronic pain. Current Opinion in Neurology. 26 (4), 360-367 (2013).
  12. Yin, W., Mei, L. A Central amygdala-ventrolateral periaqueductal gray matter pathway for pain in a mouse model of depression-like behavior. Anesthesiology. 132 (5), 1175-1196 (2020).
  13. Deng, Y. T., Zhao, M. G., Xu, T. J. Gentiopicroside abrogates lipopolysaccharide-induced depressive-like behavior in mice through tryptophan-degrading pathway. Metabolic Brain Disease. 33 (5), 1413-1420 (2018).
  14. Zhang, G. F., Wang, J. Acute single dose of ketamine relieves mechanical allodynia and consequent depression-like behaviors in a rat model. Neuroscience Letters. 631, 7-12 (2016).
  15. Edwards, R. R., Smith, M. T. Symptoms of depression and anxiety as unique predictors of pain-related outcomes following burn injury. Annals of Behavioral Medicine. 34 (3), 313-322 (2007).
  16. Pincus, T., Vlaeyen, J. W. Cognitive-behavioral therapy and psychosocial factors in low back pain: directions for the future. Spine. 27 (5), 133-138 (2002).
  17. Laumet, G., Edralin, J. D. CD3(+) T cells are critical for the resolution of comorbid inflammatory pain and depression-like behavior. Neurobiology of Pain. 7, 100043 (2020).
  18. Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 16 (2), 109-110 (1983).
  19. Deuis, J. R., Dvorakova, L. S. Methods used to evaluate pain behaviors in rodents. Frontiers in Molecular Neuroscience. 10, 284 (2017).
  20. Scholz, J., Broom, D. C. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 25 (32), 7317-7323 (2005).
  21. Kang, D. W., Choi, J. G. Automated gait analysis in mice with chronic constriction injury. Journal of Visualized Experiments: JoVE. (128), e56402 (2017).
  22. Kang, D. W., Moon, J. Y. Antinociceptive profile of levo-tetrahydropalmatine in acute and chronic pain mice models: Role of spinal sigma-1 receptor. Scientific Reports. 6, 37850 (2016).
  23. Huang, W., Chen, Z. Piperine potentiates the antidepressant-like effect of trans-resveratrol: involvement of monoaminergic system. Metabolic Brain Disease. 28 (4), 585-595 (2013).
  24. Can, A., Dao, D. T. The mouse forced swim test. Journal of Visualized Experiments: JoVE. (59), e3638 (2012).
  25. Choi, J. G., Kang, S. Y. Antinociceptive effect of Cyperi rhizoma and Corydalis tuber extracts on neuropathic pain in rats. Korean Journal of Physiology & Pharmacology. 16 (6), 387-392 (2012).
  26. Mosby’s. . Mosby’s Dictionary of Medicine, Nursing & Health Professions – Seventh edition, Nursing Standard. 20 (22), 36 (2006).
  27. Vandeputte, C., Taymans, J. M. Automated quantitative gait analysis in animal models of movement disorders. BMC Neuroscience. 11, 92 (2010).
  28. Isvoranu, G., Manole, E. Gait analysis using animal models of peripheral nerve and spinal cord injuries. Biomedicines. 9 (8), 1050 (2021).
  29. Yankelevitch-Yahav, R., Franko, M. The forced swim test as a model of depressive-like behavior. Journal of Visualized Experiments: JoVE. (97), e52587 (2015).
  30. Yan, H. C., Cao, X. Behavioral animal models of depression. Neuroscience Bulletin. 26 (4), 327-337 (2010).
  31. Papp, M., Willner, P. An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology. 104 (2), 255-259 (1991).
  32. Seminowicz, D. A., Laferriere, A. L. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage. 47 (3), 1007-1014 (2009).
  33. Yalcin, I., Barthas, F. Emotional consequences of neuropathic pain: insight from preclinical studies. Neuroscience and Biobehavioral Reviews. 47, 154-164 (2014).
  34. Choi, J. W., Kang, S. Y. Analgesic effect of electroacupuncture on paclitaxel-induced neuropathic pain via spinal opioidergic and adrenergic mechanisms in mice. American Journal of Chinese Medicine. 43 (1), 57-70 (2015).
check_url/de/62817?article_type=t

Play Video

Diesen Artikel zitieren
Choi, J., Kang, D., Kim, J., Lee, M., Choi, S., Park, J. B., Kim, H. Burn Injury-Induced Pain and Depression-Like Behavior in Mice. J. Vis. Exp. (175), e62817, doi:10.3791/62817 (2021).

View Video