Summary

Quantifying Arms and Legs Contributions during Repetitive Electrically-Assisted Sit-To-Stand Exercise in Paraplegics: A Pilot Study

Published: November 11, 2022
doi:

Summary

Arms contribution in Sit-To-Stand (SitTS) is determined by the legs’ muscle condition. Several compensating strategies were discovered in efforts to achieve complete SitTS cycles. These findings triangulate the spinal cord injury (SCI) persons’ biomechanical measures with their subjective feeling of load borne by both their limbs throughout the SitTS approaches.

Abstract

Execution of Sit-to-Stand (SitTS) in incomplete spinal cord injury (SCI) patients involves motor function in both upper and lower extremities. The use of arm support, in particular, is a significant assistive factor while executing SitTS movement in SCI population. In addition, the application of functional electrical stimulation (FES) onto quadriceps and gluteus maximus muscles is one of the prescribed management for incomplete SCI to improve muscle action for simple lower limb movements. However, the relative contribution of upper and lower extremities during SitTS has not been thoroughly investigated. Two motor incomplete SCI paraplegics performed repetitive SitTS to fatigue exercise challenge. Their performance was investigated as a mixed-method case-control study comparing SitTS with and without the assistance of FES. Three sets of SitTS tests were completed with 5-min resting period allocated in between sets, with mechanomyography (MMG) sensors attached over the rectus femoris muscles bilaterally. The exercise was separated into 2 sessions; Day 1 for voluntary SitTS and Day 2 for FES-assisted SitTS. Questionnaires were conducted after every session to gather the participants' input about their repetitive SitTS experience. The analysis confirmed that a SitTS cycle could be divided into three phases; Phase 1 (Preparation to stand), Phase 2 (Seat-off), and Phase 3 (Initiation of hip extension), which contributed to 23% ± 7%, 16% ± 4% and 61% ± 6% of the SitTS cycle, respectively. The contribution of arms and legs during SitTS movement varied in different participants based on their legs' Medical Research Council (MRC) muscle grade. In particular, the applied arm forces start to increase clearly when the leg forces start to decline during standing. This finding is supported by the significantly reduced MMG signal indicating leg muscle fatigue and their reported feeling of tiredness.

Introduction

Sit-To-Stand (SitTS) is a significant movement in a human's activity of daily living (ADL). It is also a prerequisite for basic functional activities such as standing, transferring, and walking. For patients with incomplete spinal cord injury (SCI), paraplegics in particular, SitTS exercise is a crucial activity for their functional independence1,2. This exercise is essential for independence training, which eventually helps SCI population to improve their quality of life. In order to perform a sufficient and adequate SitTS exercise, the knowledge regarding their biomechanics and muscle activity should be feasibly measurable during the training.

In a clinical rehabilitation program, SCI patients with grade American Spinal Cord Injury Association (ASIA) Impairment Scale, AIS C have a better progression and chance of recovering their motor function than those with grade AIS B, who has complete motor deficits. The SitTS performance plays an important measure in an SCI patient to indicate their motor functionality during the recovery process3. However, SCI AIS C patients require both support from the upper and lower limbs to achieve successful series of repeated SitTS movements. The upper limb support plays an important role in unloading the knees while providing adequate lifting forces and assuring the body balance during the exercise4.

The purpose of this study is to describe the biomechanical contributions of arms and legs throughout repetitive SitTS in incomplete SCI individuals. This study positions the biomechanical analysis in relation to the participants' subjective sense of their arms and legs muscle performance and feelings of 'effort and tiredness' throughout the SitTS exercise.

Many previous SitTS studies only concentrated on investigating the kinematics and kinetics aspects of the activity4,5,6,7. In a wider context of SitTS training, the development of this method which includes the instrumented standing frame (SF) and force plate analysis, could lead researchers to assess both upper and lower limb contribution of other populations such as stroke, elderly, and patients with osteoarthritis8,9,10. A previous study by Zoulias et al., instrumented custom-built hardware and software of SF presented a large frame design11. This method can be challenging to replicate. Hence this SitTS study highlighted a portable instrumented SF that can be adopted by other researchers with an existing motion analysis laboratory setup.

Protocol

The SitTS exercise and informed consent in this manuscript are described under ethical consideration by University of Malaya Medical Centre Ethics Committee (2017119-4828)12. Study procedures were explained in detail to each participant, and written informed consent was obtained before beginning the SitTS trial. This study was conducted as mixed-mode, where quantitative data were obtained using biomechanical analysis, whereas subjective scores were obtained from feedback sessions (of the participa…

Representative Results

A total of 399 and 463 SitTS trials were completed without and with FES assisted correspondingly. The trials that contributed to each set are tabulated in Table 2. The participants could perform more SitTS trials with the presence of electrical stimulation on their legs, i.e., FES. Overall, both participants managed to perform more SitTS trials with the aid of FES. This suggests that FES helps in stimulating participants' quadriceps to execute SitTS action in a prolonged period20</s…

Discussion

The current study demonstrated a bodyweight contribution in SCI individuals during SitTS exercise. This study presented SF as an essential assistive device for paraplegics to do a successful SitTS cycle. Moreover, an instrumented SF was developed to ensure the arms force can be assessed too28. The application of MMG was added in the study to observe prime SitTS muscle that helps researchers to understand SitTS performance better. Furthermore, the feedback session enabled researchers to obtain insi…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

The authors acknowledge and appreciate all the SCI volunteers who participated in this study. This research was supported by the Ministry of Higher Education, Malaysia, and the University of Malaya through Fundamental Research Grant Scheme (FRGS) Grant No. FP002-2020; FRGS/1/2020/SKK0/UM/02/1.

Materials

Customade chair A customade chair was built to following to the force plate's dimension.
FES RehaStim 2 Hasomed A device that can stimulate electrical current towards the muscle.
FlexiForce A201 Tekscan, Inc., USA Force ranges: 0-100 lbs. (440 N) Force sensors is used to capture arms force at standing frame.
Foldable standing frame Height: 70.0 cm – 90.0 cm. A walking frame that was bought from local medical company.
Motion Analysis Vicon Oxford, UK A system that records kinematic and kinetics of the activity.
Serial port terminal application CoolTerm version 1.4.6; Roger Meier's An application to record the force sensor data.
Vibromyography software BIOPAC System Inc., USA AcqKnowledge 4.3.1 A software to record and strore raw MMG data. It also function for offline analyses.
VMG transducers and BIOPAC Vibromyography system BIOPAC System Inc., USA BP150 and HLT100C A device to measure muscle activity.

Referenzen

  1. Nithiatthawanon, T., Amatachaya, P., Thaweewannakij, T., Manimmanakorn, N., Mato, L., Amatachaya, S. The use of lower limb loading ability as an indicator for independence and safety in ambulatory individuals with spinal cord injury. European Journal of Physical and Rehabilitation Medicine. 57 (1), 85-91 (2021).
  2. Chaovalit, S., Taylor, N. F., Dodd, K. J. Sit-to-stand exercise programs improve sit-to-stand performance in people with physical impairments due to health conditions: a systematic review and meta-analysis. Disability and Rehabilitation. 42 (9), 1202-1211 (2020).
  3. Tekmyster, G., et al. Physical therapy considerations and recommendations for patients following spinal cord stimulator implant surgery. Neuromodulation. , (2021).
  4. Kamnik, R., Bajd, T., Kralj, A. Functional electrical stimulation and arm supported sit-to-stand transfer after paraplegia: A study of kinetic parameters. Artificial Organs. 23 (5), 413-417 (1999).
  5. Bahrami, F., Riener, R., Jabedar-Maralani, P., Schmidt, G. Biomechanical analysis of sit-to-stand transfer in healthy and paraplegic subjects. Clinical Biomechanics. 15 (2), 123-133 (2000).
  6. Roy, G., Nadeau, S., Gravel, D., Piotte, F., Malouin, F., McFadyen, B. J. Side difference in the hip and knee joint moments during sit-to-stand and stand-to-sit tasks in individuals with hemiparesis. Clinical Biomechanics. 22 (7), 795-804 (2007).
  7. Crosbie, J., Tanhoffer, A., Fornusek, C. FES assisted standing in people with incomplete spinal cord injury: a single case design series. Spinal Cord. 52 (3), 251-254 (2014).
  8. Eitzen, I., Fernandes, L., Nordsletten, L., Snyder-Mackler, L., Risberg, M. A. Weight-bearing asymmetries during Sit-To-Stand in patients with mild-to-moderate hip osteoarthritis. Gait & Posture. 39 (2), 683-688 (2014).
  9. Petrella, M., Selistre, L. F. A., Serrao, P., Lessi, G. C., Goncalves, G. H., Mattiello, S. M. Kinetics, kinematics, and knee muscle activation during sit to stand transition in unilateral and bilateral knee osteoarthritis. Gait & Posture. 86, 38-44 (2021).
  10. Mao, Y. R., et al. The crucial changes of Sit-to-Stand phases in subacute stroke survivors identified by movement decomposition analysis. Frontiers in Neurology. 9, (2018).
  11. Zoulias, I. D., et al. Novel instrumented frame for standing exercising of users with complete spinal cord injuries. Scientific Reports. 9 (1), 13003 (2019).
  12. Abd Aziz, M., Hamzaid, N. A., Hasnan, N., Dzulkifli, M. A. Mechanomyography-based assessment during repetitive sit-to-stand and stand-to-sit in two incomplete spinal cord-injured individuals. Biomedical Engineering/Biomedizinische Technik. 65 (2), 175-181 (2020).
  13. Mazza, C., Benvenuti, F., Bimbi, C., Stanhope, S. J. Association between subject functional status, seat height, and movement strategy in sit-to-stand performance. Journal of the American Geriatrics Society. 52 (10), 1750-1754 (2004).
  14. Moore, J. L., Potter, K., Blankshain, K., Kaplan, S. L., O’Dwyer, L. C., Sullivan, J. E. A core set of outcome measures for adults with neurologic conditions undergoing rehabilitation: A clinical practice guideline. Journal of Neurologic Physical Therapy. 42 (3), 174-220 (2018).
  15. Abd Aziz, M., Hamzaid, N. A. FES Standing: The effect of arm support on stability and fatigue during Sit-to-Stand manoeuvres in sci individuals. International Conference for Innovation in Biomedical Engineering and Life Sciences. IFMBE Proceedings. 67, (2017).
  16. Plumlee, E., et al. Effects of ankle bracing on knee joint biomechanics during an unanticipated cutting maneuver. Conference Proceedings of the Annual Meeting of the American Society of Biomechanics. , 807-808 (2010).
  17. Estigoni, E. H., Fornusek, C., Hamzaid, N. A., Hasnan, N., Smith, R. M., Davis, G. M. Evoked EMG versus muscle torque during fatiguing functional electrical stimulation-evoked muscle contractions and short-term recovery in individuals with spinal cord injury. Sensors (Basel). 14 (12), 22907-22920 (2014).
  18. Hamzaid, N., Fornusek, C., Ruys, A., Davis, G. Development of an isokinetic FES leg stepping trainer (iFES-LST) for individuals with neurological disability. 2009 IEEE International Conference on Rehabilitation Robotics. , 480-485 (2009).
  19. Assess muscle effort with vibromyography. Sonostics Inc Available from: https://www.biopac.com/application-note/vibromyography-vmg-assess-muscles-effort/ (2019)
  20. Donovan-Hall, M. K., Burridge, J., Dibb, B., Ellis-Hill, C., Rushton, D. The views of people with spinal cord injury about the use of functional electrical stimulation. Artificial Organs. 35 (3), 204-211 (2011).
  21. Kagaya, H., et al. Restoration and analysis of standing-up in complete paraplegia utilizing functional electrical stimulation. Archives of Physical Medicine and Rehabilitation. 76 (9), 876-881 (1995).
  22. Jeon, W., Hsiao, H. Y., Griffin, L. Effects of different initial foot positions on kinematics, muscle activation patterns, and postural control during a sit-to-stand in younger and older adults. Journal of Biomechanics. 117, 110251 (2021).
  23. Nadeau, S., Desjardins, P., Briere, A., Roy, G., Gravel, D. A chair with a platform setup to measure the forces under each thigh when sitting, rising from a chair and sitting down. Medical & Biological Engineering & Computing. 46 (3), 299-306 (2008).
  24. Lee, S. K., Lee, S. Y. The effects of changing angle and height of toilet seat on movements and ground reaction forces in the feet during sit-to-stand. Journal of Exercise Rehabilitation. 12 (5), 438-441 (2016).
  25. Camargos, A. C. R., Rodrigues-de-Paula-Goulart, F., Teixeira-Salmela, L. F. The effects of foot position on the performance of the sit-to-stand movement with chronic stroke subjects. Archives of Physical Medicine and Rehabilitation. 90 (2), 314-319 (2009).
  26. Beck, T. W., et al. Comparison of Fourier and wavelet transform procedures for examining the mechanomyographic and electromyographic frequency domain responses during fatiguing isokinetic muscle actions of the biceps brachii. Journal of Electromyography and Kinesiology. 15 (2), 190-199 (2015).
  27. Lee, M. Y., Lee, H. Y. Analysis for Sit-to-Stand performance according to the angle of knee flexion in individuals with hemiparesis. Journal of Physical Therapy Science. 25 (12), 1583-1585 (2013).
  28. Chang, S. R., Kobetic, R., Triolo, R. J. Understanding stand-to-sit maneuver: Implications for motor system neuroprostheses after paralysis. Journal of Rehabilitation Research and Development. 51 (9), 1339-1351 (2014).
  29. Woods, B., Subramanian, M., Shafti, A., Faisal, A. A. Mechanomyography based closed-loop functional electrical stimulation cycling system. 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob. , (2018).
  30. Wessell, N., Khalil, J., Zavatsky, J., Ghacham, W., Bartol, S. Verification of nerve decompression using mechanomyography. Spine Journal. 16 (6), 679-686 (2016).
  31. Britton, E., Harris, N., Turton, A. An exploratory randomized controlled trial of assisted practice for improving sit-to-stand in stroke patients in the hospital setting. Clinical Rehabilitation. 22 (5), 458-468 (2008).
check_url/de/63149?article_type=t

Play Video

Diesen Artikel zitieren
Abd Aziz, M., Hamzaid, N. A., Hasnan, N. Quantifying Arms and Legs Contributions during Repetitive Electrically-Assisted Sit-To-Stand Exercise in Paraplegics: A Pilot Study. J. Vis. Exp. (189), e63149, doi:10.3791/63149 (2022).

View Video