Summary

通过I型光引发可逆加成-碎片链转移聚合进行3D打印和原位表面改性

Published: February 18, 2022
doi:

Summary

本方案描述了基于数字光处理的基于3D打印的聚合物材料,使用I型光引发的可逆加成碎片链转移聚合和随后的 原位 材料 通过 表面介导的聚合后功能化。光诱导3D打印为材料提供独立定制和空间控制的体积和界面特性。

Abstract

3D打印提供了对几何复杂材料的便捷访问。然而,这些材料具有内在联系的本体和界面性能,这取决于树脂的化学成分。在目前的工作中,3D打印材料通过二次表面启动的聚合过程 使用 3D打印机硬件进行后功能化,从而提供对体积和界面材料属性的独立控制。该过程从制备液体树脂开始,其含有单官能单体,交联多功能单体,能够引发聚合的光化学不稳定物质,以及至关重要的是,促进可逆加成-片段链转移(RAFT)聚合的硫代羰基硫代化合物。硫代羰基硫代化合物,通常称为RAFT试剂,介导链生长聚合过程,并提供具有更均匀网络结构的聚合物材料。液态树脂使用市售的数字光处理3D打印机以逐层方式固化,以提供具有空间控制几何形状的三维材料。初始树脂被除去,并被含有功能单体和光引发物质的新混合物取代。然后将3D打印材料暴露在存在新的功能单体混合物的情况下暴露于来自3D打印机的光下。这允许光诱导表面引发的聚合从3D打印材料表面上的潜伏RAFT剂基团发生。鉴于两种树脂的化学柔韧性,该工艺允许生产具有可定制的体积和界面特性的各种3D打印材料。

Introduction

增材制造和 3D 打印为几何复杂材料的制造提供了更高效、更便捷的路线,从而彻底改变了材料制造1。除了在3D打印中增强了设计自由度之外,这些技术通过在逐层制造过程中明智地使用前体材料 与传统的减法制造工艺相比,产生的浪费更少。自 20 世纪 80 年代以来,已经开发了各种不同的 3D 打印技术来制造聚合物、金属和陶瓷组件1。最常用的方法包括基于挤出的3D打印,如熔融长丝制造和直接油墨书写技术2,烧结技术,如选择性激光烧结3,以及基于树脂的光诱导3D打印技术,如激光和基于投影的立体光刻和掩蔽数字光处理技术4.在当今存在的众多3D打印技术中,与其他方法相比,光诱导3D打印技术提供了一些优势,包括更高的分辨率和更快的打印速度,以及在室温下对液体树脂进行凝固的能力,这为先进的生物材料3D打印开辟了可能性456789.

虽然这些优势使得3D打印在许多领域得到广泛采用,但独立定制3D打印材料特性的能力有限,限制了未来的应用10。特别是,由于无法独立于界面特性轻松定制散装机械性能,因此限制了植入物等应用,这些应用需要精细定制的生物相容性表面,并且通常具有截然不同的散装性能,以及防污和抗菌表面、传感器材料和其他智能材料111213.研究人员提出了3D打印材料的表面改性,以克服这些问题,以提供更独立可定制的体积和界面特性101415

最近,我们小组开发了一种光诱导3D打印工艺,该工艺利用可逆的加成碎片链转移(RAFT)聚合来介导网络聚合物合成1516。RAFT聚合是一种可逆的失活自由基聚合,可对聚合过程提供高度控制,并允许生产具有微调分子量和拓扑结构的大分子材料,以及广泛的化学范围171819。值得注意的是,RAFT聚合期间使用的硫代羰硫基化合物或RAFT试剂在聚合后被保留。因此,它们可以被重新激活以进一步改变大分子材料的化学和物理性质。因此,在3D打印之后,这些休眠的RAFT试剂在3D打印材料的表面上可以在功能单体的存在下重新激活,以提供定制的材料表面202122,23242526。二次表面聚合决定了界面材料的性质,并且可以通过光化学引发以空间控制的方式进行。

本方案描述了一种 通过 光诱导RAFT聚合工艺和随后 的原位 表面改性来3D打印聚合物材料的方法,以独立于本体材料的机械性能来调节界面性能。与以前的3D打印和表面改性方法相比,目前的协议不需要脱氧或其他严格的条件,因此对于非专业人士来说非常容易获得。此外,使用3D打印硬件来执行初始材料制造和表面后功能化提供了对材料属性的空间控制,并且可以在没有繁琐地对齐几个不同的光掩模以制作复杂图案的情况下执行。

Protocol

1. 3D打印程序和3D打印机的准备 按照以下步骤设计用于3D打印的数字模型。 打开计算机辅助设计程序(请参见 材料表)。 在 x-y 平面中,创建一个以原点为中心的矩形,其尺寸为 80 mm x 40 mm,然后沿正 z 轴拉伸 1.5 mm 以形成一个实心矩形棱镜,称为基础对象。 在基础物体上方,即在z = 1.5 mm处,在矩形棱镜的表面上绘制所需的表面图案(在本?…

Representative Results

3D打印和表面功能化的一般程序 如图1所示。在该协议中,网络聚合物最初 通过 光诱导RAFT聚合工艺合成15,使用3D打印机在逐层工艺中制造物体(图1A)。用于形成聚合物网络的本体树脂含有光不稳定引发物质(TPO),其在暴露于405nm光时产生自由基。然后,这些自由基可以添加到单体DMAm和交联剂PEGDA中的乙烯基键中,其 通?…

Discussion

本方案展示了一种用于3D打印具有独立可调体积和界面特性的聚合物材料的过程。该过程 通过 两步法执行,方法是3D打印基础基板,然后使用不同的功能树脂修改3D打印对象的表面层,但使用相同的3D打印硬件。虽然这项工作中使用的3D打印机旨在以逐层方式打印交联材料,但也可以使用相同的硬件执行表面功能化。如该协议所示,使用3D打印机硬件进行表面功能化的优点是易于将空间控制?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者承认澳大利亚研究委员会和澳大利亚新南威尔士大学 通过 发现研究计划(DP210100094)获得的资金。

Materials

1-pyrenemethyl methacrylate Sigma-Aldrich 765120
2-(n-butylthiocarbonothioylthio) propanoic acid Boron Molecular BM1640
3D Printer Photon Mono S light intensity at digital mask surface = 0.81 mW cm-2
3D Printing Slicing Software Photon Photon Workshop V2.1.19
40 kHz Ultrasonic Bath Thermoline UB-410
Compressed Air Coregas 230142 Tank operating at 130 kPa
Computer Assisted Design Program SpaceClaim SpaceClaim Design Manager V19.1
Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide Sigma-Aldrich 415952
Ethanol Undenatured 100% AR ChemSupply EL043-2.5L-P
Ethanol Wash bottle Rowe Scientific AZLWGF541P
Fluorescence Imager Bio-Rad Gel Doc XR+ Uses a 302 nm gas discharge lamp as emission source
Light intensity power meter Newport 843-R
Mechanical Tester Mark–10 ESM303 1 kN force gauge M5–200
Moldable plastic film Parafilm PM992
N,N-dimethlacrylamide Sigma-Aldrich 274135
N,N-Dimethylformamide HPLC ChemSupply LC1051-G4L
Poly(ethylene glycol) diacrylate average Mn 250 Sigma-Aldrich 475629
Post Cure Lamp Leoway ‎B0869BY79P 60 W 405 nm
Standards document ASTM ASTM Standard D638-14
Tensile testing machine Mark-10
UV Light Fisher Scientific 11-982-30 6 W Spectroline E-Series, Gas discharge lamp
Vortex Mixer IKA Vortex 3 LabTek 3340000I

Referenzen

  1. Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chemical Reviews. 117 (15), 10212-10290 (2017).
  2. Lewis, J. A. Direct ink writing of 3D functional materials. Advanced Functional Materials. 16 (17), 2193-2204 (2006).
  3. Kumar, S. Selective laser sintering: A qualitative and objective approach. JOM. 55 (10), 43-47 (2003).
  4. Jung, K., et al. Designing with light: Advanced 2D, 3D, and 4D materials. Advanced Materials. 32 (18), 1903850 (2020).
  5. Lim, K. S., et al. Fundamentals and applications of photo-cross-linking in bioprinting. Chemical Reviews. 120 (19), 10662-10694 (2020).
  6. Chen, H., et al. Photoinitiators derived from natural product scaffolds: Monochalcones in three-component photoinitiating systems and their applications in 3D printing. Polymer Chemistry. 11 (28), 4647-4659 (2020).
  7. Chen, H., et al. Novel D-π-A and A-π-D-π-A three-component photoinitiating systems based on carbazole/triphenylamino based chalcones and application in 3D and 4D printing. Polymer Chemistry. 11 (40), 6512-6528 (2020).
  8. Zhang, J., Xiao, P. 3D printing of photopolymers. Polymer Chemistry. 9 (13), 1530-1540 (2018).
  9. Zhu, Y., Ramadani, E., Egap, E. Thiol ligand capped quantum dot as an efficient and oxygen tolerance photoinitiator for aqueous phase radical polymerization and 3D printing under visible light. Polymer Chemistry. 12 (35), 5106-5116 (2021).
  10. Jiang, P., Ji, Z., Wang, X., Zhou, F. Surface functionalization – a new functional dimension added to 3D printing. Journal of Materials Chemistry C. 8 (36), 12380-12411 (2020).
  11. Gonzalez, G., Chiappone, A., Dietliker, K., Pirri, C. F., Roppolo, I. Fabrication and functionalization of 3D printed polydimethylsiloxane-based microfluidic devices obtained through digital light processing. Advanced Materials Technologies. 5 (9), 2000374 (2020).
  12. Yao, X., Song, Y., Jiang, L. Applications of bio-inspired special wettable surfaces. Advanced Materials. 23 (6), 719-734 (2011).
  13. Bose, S., Robertson, S. F., Bandyopadhyay, A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomaterialia. 66, 6-22 (2018).
  14. Wang, X., et al. i3DP, a robust 3D printing approach enabling genetic post-printing surface modification. Chemical Communications. 49 (86), 10064-10066 (2013).
  15. Lee, K., Corrigan, N., Boyer, C. Rapid high-resolution 3D printing and surface functionalization via type I photoinitiated raft polymerization. Angewandte Chemie International Edition. 60 (16), 8839-8850 (2021).
  16. Zhang, Z., Corrigan, N., Bagheri, A., Jin, J., Boyer, C. A versatile 3D and 4D printing system through photocontrolled raft polymerization. Angewandte Chemie International Edition. 58 (50), 17954-17963 (2019).
  17. Corrigan, N., et al. Reversible-deactivation radical polymerization (controlled/living radical polymerization): From discovery to materials design and applications. Progress in Polymer Science. 111, 101311 (2020).
  18. Moad, G., Rizzardo, E., Thang, S. H. Living radical polymerization by the raft process – A third update. Australian Journal of Chemistry. 65 (8), 985-1076 (2012).
  19. Chiefari, J., et al. Living free-radical polymerization by reversible addition−Fragmentation chain transfer: The RAFT process. Macromolecules. 31 (16), 5559-5562 (1998).
  20. Fromel, M., et al. User-friendly chemical patterning with digital light projection polymer brush photolithography. European Polymer Journal. 158, 110652 (2021).
  21. Fromel, M., Li, M., Pester, C. W. Surface engineering with polymer brush photolithography. Macromolecular Rapid Communications. 41 (18), 2000177 (2020).
  22. Wang, C. -. G., Chen, C., Sakakibara, K., Tsujii, Y., Goto, A. Facile fabrication of concentrated polymer brushes with complex patterning by photocontrolled organocatalyzed living radical polymerization. Angewandte Chemie International Edition. 57 (41), 13504-13508 (2018).
  23. Zoppe, J. O., et al. Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chemical Reviews. 117 (3), 1105 (2017).
  24. Pester, C. W., et al. Ambiguous antifouling surfaces: Facile synthesis by light-mediated radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry. 54 (2), 253-262 (2016).
  25. Poelma, J. E., Fors, B. P., Meyers, G. F., Kramer, J. W., Hawker, C. J. Fabrication of complex three-dimensional polymer brush nanostructures through light-mediated living radical polymerization. Angewandte Chemie International Edition. 52 (27), 6844-6848 (2013).
  26. Zhu, Y., Egap, E. PET-RAFT polymerization catalyzed by cadmium selenide quantum dots (QDs): Grafting-from QDs photocatalysts to make polymer nanocomposites. Polymer Chemistry. 11 (5), 1018-1024 (2020).
  27. ASTM International. ASTM Standard D638-14: Standard Test method for tensile properties of plastics. ASTM International. , (2014).
  28. Moad, G. RAFT (Reversible addition-fragmentation chain transfer) crosslinking (co)polymerization of multi-olefinic monomers to form polymer networks. Polymer International. 64 (1), 15-24 (2015).
  29. Li, M., et al. SI-PET-RAFT: Surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerization. ACS Macro Letters. 8 (4), 374-380 (2019).

Play Video

Diesen Artikel zitieren
Corrigan, N., Boyer, C. 3D Printing and In Situ Surface Modification via Type I Photoinitiated Reversible Addition-Fragmentation Chain Transfer Polymerization. J. Vis. Exp. (180), e63538, doi:10.3791/63538 (2022).

View Video