Summary

rd10小鼠中人胚胎干细胞衍生的光感受器祖细胞的视网膜下递送

Published: October 06, 2023
doi:

Summary

我们描述了用于制备冷冻保存后 hESC 衍生的光感受器祖细胞以及这些细胞在 rd10 小鼠中的视网膜下递送的详细方案。

Abstract

使用人类多能干细胞再生感光细胞是一种很有前途的疗法,可用于治疗晚期遗传性和衰老性视网膜疾病。我们已经证明,人类重组视网膜特异性层粘连蛋白亚型基质能够支持人胚胎干细胞(hESC)分化为光感受器祖细胞。此外,这些细胞的视网膜下注射在 rd10 啮齿动物和兔子模型中也显示出部分恢复。众所周知,视网膜下注射是一种既定的方法,由于它靠近目标空间,已被用于将药物化合物输送到眼睛的感光细胞和视网膜色素上皮 (RPE) 层。它还被用于将腺相关病毒载体输送到视网膜下空间以治疗视网膜疾病。由于小鼠眼球大小的限制,小鼠模型中药物化合物和细胞的视网膜下递送具有挑战性。该方案描述了用于注射的hESC衍生的光感受器祖细胞的详细程序以及这些细胞在遗传性视网膜色素变性突变 体rd10 小鼠中的视网膜下递送技术。这种方法允许对目标区域进行细胞治疗,特别是视网膜的外核层,在那里发生导致感光细胞变性的疾病。

Introduction

遗传性视网膜疾病和年龄相关性黄斑变性会导致感光细胞丢失并最终失明。视网膜感光器是视网膜的外段层,由负责光转导(即将光转换为神经元信号)的特殊细胞组成。视杆细胞和视锥细胞感光细胞与视网膜色素沉着层 (RPE) 相邻1。补偿细胞损失的感光细胞替代疗法一直是一种新兴和发展中的治疗方法。胚胎干细胞 (ESC)234、诱导多能干细胞 (iPSCs) 衍生的 RPE 细胞和视网膜祖细胞 (RPC)45678 用于恢复受损的感光细胞。视网膜下间隙是视网膜和 RPE 之间的密闭空间,是沉积这些细胞以替换受损的感光细胞、RPE 和 Mueller 细胞的有吸引力的位置,因为它位于附近 9,10,11

在临床前研究中,基因和细胞疗法一直在利用视网膜下空间进行再生医学治疗各种视网膜疾病。这包括以反义寡核苷酸疗法12,13或CRISPR/Cas9的形式递送基因或基因编辑工具的功能拷贝,或通过基于腺相关病毒(AAV)的策略进行碱基编辑14,15,16,植入材料(例如,RPE片,视网膜假体17,18,19)和分化干细胞衍生的视网膜类器官2021,22 用于治疗视网膜和 RPE 相关疾病。在视网膜下空间使用 hESC-RPE31 治疗 RPE65 相关 Leber 先天性黑朦 (LCA)23,24、CNGA3 连锁色盲25、MERTK 相关视网膜色素变性26、脉络膜血症27282930已被证明是一种有效的方法。将细胞直接注射到受损区域附近可大大提高细胞在适当区域沉降、突触整合和最终视力改善的机会。

尽管在人类和大眼睛模型(即猪32333435、兔3637383940 和非人灵长类动物414243)中已经建立了视网膜下注射,但由于眼球大小的限制和巨大的占据鼠标眼睛的晶状体44,45,46。然而,转基因模型仅在小动物中容易获得,而在大型动物(即兔子和非人类灵长类动物)中不容易获得,因此小鼠视网膜下注射引起了人们关注视网膜遗传疾病的新治疗方法。目前有三种主要方法将细胞或AAV输送到视网膜下空间,即经角膜途径、经巩膜途径和平坦途径(见图2)。经角膜和经巩膜途径与白内障形成、粘连、脉络膜出血和注射部位反流有关 114445474849。我们采用pars plana方法作为注射过程的直接可视化,可以在显微镜下实时获得注射部位。

我们最近描述了一种方法,该方法可以使用重组人视网膜特异性层粘连蛋白亚型 LN523,在无异种、化学定义的条件下将人胚胎干细胞 (hESC) 分化为光感受器祖细胞。由于发现 LN523 存在于视网膜中,我们假设人类视网膜的细胞外基质生态位可以在 体外 重现,从而支持与 hESC 的光感受器分化 36。单细胞转录组学分析显示,32 d后生成共表达锥杆同源盒和recoverin的感光祖细胞。使用模拟常染色体人视网膜色素变性的视网膜变性 10 (rd10) 突变小鼠模型来评估第 32 天 hESC 衍生的光感受祖细胞 在体内的疗效。将 hESC 衍生的感光祖细胞注射到 P20 处 rd10 小鼠的视网膜下空间,其中光感受器功能障碍和变性正在进行36。在这里,我们描述了用于制备冷冻保存后 hESC 衍生的光感受器祖细胞并递送至 rd10 小鼠视网膜下空间的详细方案。该方法还可用于将 AAV、细胞悬液、肽或化学物质施用到小鼠的视网膜下空间中。

Protocol

体内实验是根据新加坡保健集团(SingHealth)机构动物护理和使用委员会(IACUC)和视觉和眼科研究协会(ARVO)批准的关于在眼科和视觉研究中使用动物的声明进行的。幼崽通过喂食含有环孢菌素(260 g/L)的饮用水,对幼崽进行从P17(移植前)到P30(移植后)的免疫抑制。 1. 冷冻保存后第 32 天 hESC 衍生的光感受器祖细胞的制备 在37°C水浴中预热的?…

Representative Results

根据制造商的说明组装 10 μL 玻璃注射器(图 1),用于递送细胞悬液/培养基的钝针如 图 1B 所示。视网膜下注射的不同方法如 图 2 所示。我们描述了该协议中的pars plana方法(图2C)。安装在玻璃注射器上的钝针通过硬化切开术伤口插入,并进入全球的视网膜下空间。如 图3A所示,在?…

Discussion

视网膜下注射已用于细胞悬浮移植,以治疗RPE和视网膜疾病23,25,26,27,28,31,40。这种方法在啮齿动物研究中非常重要,不仅对于细胞移植和基因治疗方法,而且对于评估视网膜疾病的新型治疗化合物也是如此。目前,有三种?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

我们感谢 Wei Sheng Tan、Luanne Chiang Xue Yen、Xinyi Lee 和 Yingying Chung 为冷冻保存后第 32 天 hESC 衍生的光感受器祖细胞的制备提供技术援助。这项工作得到了美国国家医学研究委员会青年研究员研究资助奖(NMRC / OFYIRG / 0042 / 2017)和国家研究基金会第24 竞争性研究计划资助(CRP24-2020-0083)对HGT的部分支持。

Materials

0.3% Tobramycin Novartis NDC  0078-0813-01 Tobrex (3.5 g)
0.3% Tobramycin and 0.1% Dexamethasone Novartis NDC 0078-0876-01 Tobradex (3.5 g)
0.5% Proparacaine hydrochloride Alcon NDC 0998-0016-15 0.5% Alcaine (15 mL)
1 mL Tuberculin syringe Turemo SS01T2713
1% Tropicamide Alcon NDC 0998-0355-15 1% Mydriacyl (15 mL)
2.5% Phenylephrine hydrochloride Alcon NDC 0998-0342-05 2.5% Mydfrin (5 mL)
24-well tissue culture plate Costar 3526
30 G Disposable needle Becton Dickinson (BD) 305128
33 G, 20 mm length blunt needles Hamilton 7803-05
Automated Cell Counter NanoEnTek Model: Eve
B27 without Vitamin A Life Technologies 12587001 2%36
Buprenorphine Ceva Vetergesic vet (0.3 mg/mL)
CKI-7 Sigma C0742 5 µM36
Cyclosporine Novartis 260 g/L in drinking water
Day 32 hESC-derived photoreceptor progenitor cells DUKE-NUS Medical School Human embryonic stem cells are differentiated for 32 days. See protocol in Ref 36.
Gauze Winner Industries Co. Ltd. 1SNW475-4
Glasgow Minimum Essential Medium Gibco 11710–035
hESC cell line H1 WiCell Research Institute WA01
Human brain-derived neurotrophic factor (BDNF) Peprotech 450-02-50 10 ng/mL36
Human ciliary neurotrophic factor (CNTF) Prospec-Tany Technogene CYT-272 10 ng/mL36
Ketamine hydrochloride (100 mg/mL) Ceva Santé Animale KETALAB03
LN-521 Biolamina LN521-02 1 µg36
mFreSR STEMCELL Technologies 5854
Microlitre glass syringe (10 mL) Hamilton 7653-01
N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) Selleckchem S2215 10 µM36
N-2 supplement Life Technologies A13707-01 1%36
Non-essential amino acids (NEAA) Gibco 11140–050 1x36
NutriStem XF Media Satorius 05-100-1A
Operating microscope Zeiss OPMI LUMERA 700 With Built-in iOCT function
PRDM (Photoreceptor differentiation medium, 50ml) DUKE-NUS Medical School See media composition36. Basal Medium, 10 µM DAPT, 10 ng/mL BDNF, 10 ng/mL CNTF, 0.5 µM Retinoic acid, 2% B27 and 1% N2. Basal Medium: 1x GMEM, 1 mM sodium pyruvate, 0.1 mM B-mercaptoethanol, 1x Non-essential amino acids (NEAA).
Pyruvate Gibco 11360–070 1 mM36
Rd10 mice Jackson Laboratory B6.CXB1-Pde6brd10/J mice Gender: male/female, Age: P20 (injection), Weight: 3-6 g 
Retinoic acid Tocris Bioscience 0695/50 0.5 µM36
Round Cover Slip (12 mm) Fisher Scientific 12-545-80
SB431542 Sigma S4317 0.5 µM36
Vidisic Gel (10 g) Dr. Gerhard Mann
Xylazine hydrochloride (20 mg/mL) Troy Laboratories LI0605
β-mercaptoethanol Life Technologies 21985–023 0.1 mM36

Referenzen

  1. Molday, R. S., Moritz, O. L. Photoreceptors at a glance. Journal of Cell Science. 128 (22), 4039-4045 (2015).
  2. Aboualizadeh, E., et al. Imaging Transplanted Photoreceptors in Living Nonhuman Primates with Single-Cell Resolution. Stem Cell Reports. 15 (2), 482-497 (2020).
  3. Petrus-Reurer, S., et al. Preclinical safety studies of human embryonic stem cell-derived retinal pigment epithelial cells for the treatment of age-related macular degeneration. Stem cells translational medicine. 9 (8), 936-953 (2020).
  4. Wang, S. T., et al. Transplantation of Retinal Progenitor Cells from Optic Cup-Like Structures Differentiated from Human Embryonic Stem Cells In Vitro and In Vivo Generation of Retinal Ganglion-Like Cells. Stem cells and development. 28 (4), 258-267 (2019).
  5. Wang, Z., et al. Intravitreal Injection of Human Retinal Progenitor Cells for Treatment of Retinal Degeneration. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 26, e921184-e921191 (2020).
  6. Semo, M., et al. Efficacy and Safety of Human Retinal Progenitor Cells. Translational vision science & technology. 5 (4), 6 (2016).
  7. Luo, J., et al. Human Retinal Progenitor Cell Transplantation Preserves Vision. The Journal of Biological Chemistry. 289 (10), 6362 (2014).
  8. Liu, Y., et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem cell research & therapy. 8 (1), 209 (2017).
  9. Maia, M., et al. Effects of indocyanine green injection on the retinal surface and into the subretinal space in rabbits. Retina (Philadelphia, Pa). 24 (1), 80-91 (2004).
  10. Nickerson, J. M., et al. Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods in molecular biology (Clifton, N.J). 884, 53 (2012).
  11. Peng, Y., Tang, L., Zhou, Y. Subretinal Injection: A Review on the Novel Route of Therapeutic Delivery for Vitreoretinal Diseases. Ophthalmic Research. 58 (4), 217-226 (2017).
  12. Murray, S. F., et al. Allele-Specific Inhibition of Rhodopsin With an Antisense Oligonucleotide Slows Photoreceptor Cell Degeneration. Investigative Ophthalmology & Visual Science. 56 (11), 6362 (2015).
  13. Cideciyan, A. V., et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proceedings of the National Academy of Sciences of the United States of America. 115 (36), E8547-E8556 (2018).
  14. Maeder, M. L., et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nature medicine. 25 (2), 229-233 (2019).
  15. Katrekar, D., et al. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nature methods. 16 (3), 239 (2019).
  16. Ong, T., Pennesi, M. E., Birch, D. G., Lam, B. L., Tsang, S. H. Adeno-Associated Viral Gene Therapy for Inherited Retinal Disease. Pharmaceutical Research. 36 (2), 34 (2019).
  17. Pardue, M. T., et al. Neuroprotective effect of subretinal implants in the RCS rat. Investigative ophthalmology & visual science. 46 (2), 674-682 (2005).
  18. Liu, Z., et al. Surgical Transplantation of Human RPE Stem Cell-Derived RPE Monolayers into Non-Human Primates with Immunosuppression. Stem cell reports. 16 (2), 237-251 (2021).
  19. Martinez Camarillo, J. C., et al. Development of a Surgical Technique for Subretinal Implants in Rats. Journal of visualized experiments: JoVE. (190), e64585 (2022).
  20. Xue, Y., et al. The Prospects for Retinal Organoids in Treatment of Retinal Diseases. Asia-Pacific Journal of Ophthalmology. 11 (4), 314-327 (2022).
  21. McLelland, B. T., et al. Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats. Investigative Ophthalmology and Visual Science. 59 (6), 2586-2603 (2018).
  22. Lin, B., et al. Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Investigative Ophthalmology and Visual Science. 61 (11), 34 (2020).
  23. Russell, S., et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet (London, England). 390 (10097), 849-860 (2017).
  24. Testa, F., et al. Three Year Follow-Up after Unilateral Subretinal Delivery of Adeno-Associated Virus in Patients with Leber Congenital Amaurosis Type 2. Ophthalmology. 120 (6), 1283 (2013).
  25. Fischer, M. D., et al. Safety and Vision Outcomes of Subretinal Gene Therapy Targeting Cone Photoreceptors in Achromatopsia: A Nonrandomized Controlled Trial. JAMA ophthalmology. 138 (6), 643-651 (2020).
  26. Ghazi, N. G., et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Human genetics. 135 (3), 327-343 (2016).
  27. MacLaren, R. E., et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet (London, England). 383 (9923), 1129-1137 (2014).
  28. Lam, B. L., et al. Choroideremia Gene Therapy Phase 2 Clinical Trial: 24-Month Results. American journal of ophthalmology. 197, 65-73 (2019).
  29. Xue, K., et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nature medicine. 24 (10), 1507-1512 (2018).
  30. Zhai, Y., et al. AAV2-Mediated Gene Therapy for Choroideremia: 5-Year Results and Alternate Anti-sense Oligonucleotide Therapy. American Journal of Ophthalmology. 248, 145-156 (2023).
  31. Schwartz, S. D., Tan, G., Hosseini, H., Nagiel, A. Subretinal Transplantation of Embryonic Stem Cell-Derived Retinal Pigment Epithelium for the Treatment of Macular Degeneration: An Assessment at 4 Years. Investigative ophthalmology & visual science. 57 (5), ORSFc1-ORSFc9 (2016).
  32. Vu, Q. A., et al. Structural changes in the retina after implantation of subretinal three-dimensional implants in mini pigs. Frontiers in Neuroscience. 16, 1010445 (2022).
  33. Spindler, L., et al. Controlled injection pressure prevents damage during subretinal injections in pigs. Investigative Ophthalmology & Visual Science. 59 (9), 5918-5918 (2018).
  34. Yang, K., et al. Robot-assisted subretinal injection system: development and preliminary verification. BMC Ophthalmology. 22 (1), 1-10 (2022).
  35. Olufsen, M. E., et al. Controlled Subretinal Injection Pressure Prevents Damage in Pigs. Ophthalmologica. Journal international d’ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde. 245 (3), 285-293 (2022).
  36. Tay, H. G., et al. Photoreceptor laminin drives differentiation of human pluripotent stem cells to photoreceptor progenitors that partially restore retina function. Molecular therapy the journal of the American Society of Gene Therapy. 31 (3), 825-846 (2023).
  37. Petrus-Reurer, S., et al. Subretinal Transplantation of Human Embryonic Stem Cell Derived-retinal Pigment Epithelial Cells into a Large-eyed Model of Geographic Atrophy. Journal of visualized experiments: JoVE. (131), e56702 (2018).
  38. Petrus-Reurer, S., et al. Integration of subretinal suspension transplants of human embryonic stem cell-derived retinal pigment epithelial cells in a large-eyed model of geographic atrophy. Investigative Ophthalmology and Visual Science. 58 (2), 1314-1322 (2017).
  39. Babu, V. S., et al. Depleted Hexokinase1 and lack of AMPKα activation favor OXPHOS-dependent energetics in Retinoblastoma tumors. Translational research the journal of laboratory and clinical medicine. (23), 00108-00111 (2023).
  40. Plaza Reyes, A., et al. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model. Stem cell reports. 6 (1), 9-17 (2016).
  41. Takahashi, K., et al. The influence of subretinal injection pressure on the microstructure of the monkey retina. PLoS ONE. 13 (12), e0209996 (2018).
  42. Tan, G. S. W., et al. Hints for Gentle Submacular Injection in Non-Human Primates Based on Intraoperative OCT Guidance. Translational Vision Science & Technology. 10 (1), 10-10 (2021).
  43. Yiu, G., et al. Suprachoroidal and Subretinal Injections of AAV Using Transscleral Microneedles for Retinal Gene Delivery in Nonhuman Primates. Molecular therapy. Methods & clinical development. 16, 179-191 (2020).
  44. Mühlfriedel, R., Michalakis, S., Garrido, M. G., Biel, M., Seeliger, M. W. Optimized Technique for Subretinal Injections in Mice. Methods in Molecular Biology. 935, 343-349 (2012).
  45. Huang, P., et al. Subretinal injection in mice to study retinal physiology and disease. Nature Protocols. 17 (6), 1468-1485 (2022).
  46. Huang, P., et al. The Learning Curve of Murine Subretinal Injection Among Clinically Trained Ophthalmic Surgeons. Translational Vision Science & Technology. 11 (3), 13 (2022).
  47. Qi, Y., et al. Trans-Corneal Subretinal Injection in Mice and Its Effect on the Function and Morphology of the Retina. PLOS ONE. 10 (8), e0136523 (2015).
  48. Irigoyen, C., et al. Subretinal Injection Techniques for Retinal Disease: A Review. Journal of Clinical Medicine. 11 (16), 4717 (2022).
  49. Parikh, S., et al. An Alternative and Validated Injection Method for Accessing the Subretinal Space via a Transcleral Posterior Approach. Journal of visualized experiments: JoVE. (118), e54808 (2016).
  50. Amer, M. H., White, L. J., Shakesheff, K. M. The effect of injection using narrow-bore needles on mammalian cells: Administration and formulation considerations for cell therapies. Journal of Pharmacy and Pharmacology. 67 (5), 640-650 (2015).

Play Video

Diesen Artikel zitieren
Tun, S. B. B., Shepherdson, E., Tay, H. G., Barathi, V. A. Sub-Retinal Delivery of Human Embryonic Stem Cell Derived Photoreceptor Progenitors in rd10 Mice. J. Vis. Exp. (200), e65848, doi:10.3791/65848 (2023).

View Video