Summary

Two-Photon Intravital Microscopy of Glioblastoma in a Murine Model

Published: March 01, 2024
doi:

Summary

We present a novel approach for two-photon microscopy of the tumor delivery of fluorescent-labeled iron oxide nanoparticles to glioblastoma in a mouse model.

Abstract

The delivery of intravenously administered cancer therapeutics to brain tumors is limited by the blood-brain barrier. A method to directly image the accumulation and distribution of macromolecules in brain tumors in vivo would greatly enhance our ability to understand and optimize drug delivery in preclinical models. This protocol describes a method for real-time in vivo tracking of intravenously administered fluorescent-labeled nanoparticles with two-photon intravital microscopy (2P-IVM) in a mouse model of glioblastoma (GBM).

The protocol contains a multi-step description of the procedure, including anesthesia and analgesia of experimental animals, creating a cranial window, GBM cell implantation, placing a head bar, conducting 2P-IVM studies, and post-surgical care for long-term follow-up studies. We show representative 2P-IVM imaging sessions and image analysis, examine the advantages and disadvantages of this technology, and discuss potential applications.

This method can be easily modified and adapted for different research questions in the field of in vivo preclinical brain imaging.

Introduction

Two-photon intravital microscopy (2P-IVM) is a fluorescence imaging technique that allows the visualization of living tissue1.

First developed in the 1990s, 2P-IVM has been used for in vivo analysis of the retina2, kidney3, small intestine4, cochlea5, heart6, trachea7, and the brain in various preclinical models8,9. In the field of neuroscience, 2P-IVM has gained importance as a technique for real-time imaging of the healthy brain in awake animals10, as well as studying diseases of the nervous system such as Alzheimer's11, Parkinson's12 and glioblastoma (GBM)13,14,15,16.

2P-IVM offers an elegant solution for studying the tumor microenvironment during the development of GBM. While some previous studies focused on in vitro17 and ex vivo models18, others implemented orthotopic19 and xenotropic20 in vivo models for examining GBM. Madden et al. performed native imaging of CNS-1 rat glioma cell line in a mouse model13. Using an orthotopic GL261-DsRed murine model, Ricard et al. performed an intravenous administration of a fluorophore to enhance the blood vessels in the tumor region in 2P-IVM14.

Here, we apply 2P-IVM for tracking the tumor delivery of fluorescent-labeled iron oxide nanoparticles (NP) in an orthotopic mouse model of GBM. Using a cranial window, this method allows us to study the real-time spatiotemporal distribution of NPs in the brain in detail.

Protocol

The animal procedure described in this protocol is in accordance with the requirements of the Administrative Panel on Laboratory Animal Care (APLAC). 1. Cell culture Preparation of hood Wash hands, wear gloves and a lab coat. Turn on the biological safety cabinet and set the sash level to an appropriate opening height. Let the hood purge for 3-5 min. Spray the hood area with 70% ethanol and wipe it down with tissue paper. Spray all reagents w…

Representative Results

Here, we performed cranial window surgery and engrafted C6 cells in an NSG mouse model of GBM (n = 5). A proper seal between all components involved in the creation of the window (Figure 1A) will ensure the windows' durability for long-term imaging and, additionally, reduce morbidity. Using the stage adapted for in vivo 2P-IVM (Figure 2), we could image animals under anesthesia for up to 2 h without any major motion artifacts. Approximately 10 min a…

Discussion

We present a method for real-time in vivo NP tracking using 2P-IVM through a cranial window to evaluate the tumor delivery of fluorescent-labeled iron oxide NPs. The surgical technique for this procedure requires a steady hand and advanced experimental surgical skills. It is advisable to practice using carcasses or phantoms before moving forward to live animal experience. As an alternative, Hoeferlin et al. implemented a robotic drill to reduce thermal damage, minimize surgical technique variability, and standar…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

We would like to thank the Stanford Wu Tsai Neuroscience Microscopy Service, the Stanford Center for Innovations in In Vivo Imaging (SCi3) – small animal imaging center, NIH S10 Shared Instrumentation Grant (S10RR026917-01, PI Michael Moseley, Ph.D.), and Stanford Preclinical Imaging Facility at Porter Drive for providing the equipment and infrastructure for this project. This work was supported by a grant from the National Institute for Child Health and Human Development, grant number R01HD103638. We would like to thank the Schnitzer Group, Stanford University; the Zuo lab, University of Santa Cruz; and the Neurovascular Imaging Laboratory, Boston Photonic Center, University of Boston, for educational discussions on two-photon imaging and cranial window models.

Materials

0.9% sodium chloride infusion solution Baxter Corp 533-JB1301P

Dulbecco's Modified Eagle Medium
Invitrogen 11965-092
1 mL syringes BD Luer-Lok syringe, REF309628
10% FBS Thermo fisher Cytiva SH30910.03HI
10% DMSO Sigma-Aldrich D8418-50ML
2-photon microscope Prairie Technologies, Bruker Prairie Ultima IV
Alcohol applicators, 70% Medline Industries, LP MDS093810
Alcohol, spray bottle Decon Labs Inc Decon SaniHol, 04-355-122
Aluminum foil Reynold Brands Reynold Wrap non-stick aluminum foil
Anesthesia machine Patterson Scientific SAS3
Anesthesia monitoring  Kent Scientific  MouseSTAT Jr. Rodent Pulsoxymeter
Antibiotic-Antimycotic (100x), liquid Invitrogen 15240-096
Betadine applicators Professional Disposables International, Inc S41125
Biopsy punch, 5 mm  Miltex Size 5
Buprenorphine sustained release Zoo Pharm Bup SR Lab, 1.0 mg/mL A generic drug can be used instead. 
C6 rat glioma cell line ATCC (American Tissue Culture Collection) CCL-107
Cannulas BD 16 G, 1.1/2”, 30 G, 1”
Carprofen Pfizer  Rimadyl, 50 mg/ml A generic drug can be used instead. 
Cefazoline Sagent Pharmaceuticals 25021-101-10, 1 g/vial A generic drug can be used instead. 
Cell strainer, 40 µm Fisher Scientific 87711
Cotton tip applicators, 6”  Dyad Medical Sourcing, LLC HCS1005
Dental cement Stoelting Co 51459 Dental cement kit, clear, 2 components
Dexamethasone Bimeda 138RX, 2 mg/mL A generic drug can be used instead. 
DietGel ClearH2O Recovery, 72-06-502
Drape  Cardinal Health Bio Shield Wrap
Drill Saeyang Microtech Escort Pro, B08350
Drill tips  Hager & Meissinger GmbH REF310104001001005 Size 005, US 1/4
FIJI imaging analysis software National Institute of Health https://imagej.net/software/fiji/
Forceps Fisher Scientific 13-812-41
Gauze Fisher HealthCare Sterile Cotton Gauze Pad, 4 x 4”, 22-415-469
Gelfoam  Ethicon Inc.  Surgifoam absorbable gelatin sponge, Ref. 1972
Germinator  Cellpoint Scientific  Germinator 500, No. 11688
Glass coverslips, 5 mm diameter Fisher Scientific Menzel Cover glass 
Gloves, non-sterile Fisher Scientific Nitrile powder-free medical examination gloves
Gloves, sterile Medline Industries, LP MDS104070
Hair removal cream Church & Dwight Nair Hair remover lotion 
Hamilton syringe Hamilton Company Inc Gastight #1701, 10 µL
HBSS without Ca, Mg Fisher Scientific PI88284
Head bar Hongway 5 mm inner diameter O-rings
Heating pad Stoelting Co.  Rodent warmer X2
Insulin syringes Exel International Medical Products  29G x 1/2″
Iron oxide nanoparticles Covis Pharma GmbH Feraheme ferumoxytol injection, 510 mg/17 mL, 59338077501
Isoflurane Dechra 26675-46-7
Mice Jackson Laboratories NSG, Strain 005557
Microscope (surgery) Seiler Medical Seiler IQ Q-100-220
Nanoparticles Custom Iron oxide nanoparticles (Ferumoxytol) labeled with fluorescein isothiocyanate
Ophtalmic ointment Major pharmaceuticals Lubrifresh P.M. nighttime ointment, 203964
Oxygen Linde Gas & Equipment Inc.  High Pressure Steel K Style Cylinder, 249CF, 2000PSIG, CGA 540
Plastic cups Georgia-Pacirif Consumer Products Dixie Portion Cup, 2 oz., Plastic, Clear, PK2400
Polyethylene tubing Braintree Scientific 50-195-5494
Scale Ohaus Corp CR2200
Scalpel Integra Life Sciences Production Corp Integra Miltex Stainless steel disposable scalpel
Scissors Fisher Scientific 13-804-18
Sealant Henkel Corp Loctite 4014
Single use lab gown High Tech Conversions 17-444-081
Stereotactic frame Stoelting Co.  Stoelting New Standard TM
Sterile Vacuum Bottle Top Filtration Systems Fisher Scientific S2GPU05RE, MilliporeSigma NO.:S2GPU05RE
Styrofoam box N/A N/A
Surgical gloves Cardinal Health 19-163-108
Surgical glue, 3M Vetbond tissues adhesive 3M Animal Care Prodcuts 1469SB
Tail vein cathether Custom Consists of two 30 G cannulas connected with sillicone tubing 
TrypLE Express (1x), no phenol red Invitrogen 12604-039
Ultraviolett torch Spring sunshine technology Consciot

Referenzen

  1. Denk, W., Strickler, J. H., Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science. 248 (4951), 73-76 (1990).
  2. Wang, Z., McCracken, S., Williams, P. R. Transpupillary two-photon in vivo imaging of the mouse retina. J Vis Exp. 168, 61970 (2021).
  3. Zhang, K., et al. In vivo two-photon microscopy reveals the contribution of Sox9+ to kidney regeneration in a mouse model with extracellular vesicle treatment. J Biol Chem. 295 (34), 12203 (2020).
  4. Jang, W. H., et al. Two-photon microscopy of Paneth cells in the small intestine of live mice. Sci Rep. 8 (1), 14174 (2018).
  5. Ihler, F., Bertlich, M., Weiss, B., Dietzel, S., Canis, M. Two-photon microscopy allows imaging and characterization of cochlear microvasculature in vivo. Biomed Res Int. 2015, 154272 (2015).
  6. Matsuura, R., et al. Intravital imaging with two-photon microscopy reveals cellular dynamics in the ischeamia-reperfused rat heart. Sci Rep. 8 (1), 15991 (2018).
  7. Veres, T. Z., et al. Intubation-free in vivo imaging of the tracheal mucosa using two-photon microscopy. Sci Rep. 7 (1), 694 (2017).
  8. Zong, W., et al. Large-scale two-photon calcium imaging in freely moving mice. Cell. 185 (7), 1240-1256.e30 (2022).
  9. Takasaki, K., Abbasi-Asl, R., Waters, J. Superficial bound of the depth limit of two-photon imaging in mouse brain. eNeuro. 17 (1), (2019).
  10. Birkner, A., Konnerth, A. Deep two-photon imaging in vivo with a red-shifted calcium indicator. Methods Mol Biol. 1929, 15-26 (1929).
  11. Busche, M. A. In vivo two-photon calcium imaging of hippocampal neurons in Alzheimer mouse models. Methods Mol Biol. 1750, 341-351 (2018).
  12. Li, L., et al. A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson’s disease models. Nat Commun. 5, 3276 (2014).
  13. Madden, K. S., Zettel, M. L., Majewska, A. K., Brown, E. B. Brain tumor imaging: live imaging of glioma by two-photon microscopy. Cold Spring Harb Protoc. 2013 (3), (2013).
  14. Ricard, C., et al. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice. Sci Rep. 6, 26381 (2016).
  15. Soubéran, A., et al. Effects of VEGF blockade on the dynamics of the inflammatory landscape in glioblastoma-bearing mice. J Neuroinflammation. 16 (1), 191 (2019).
  16. Zhang, W., et al. Real-time vivo reveals specific nanoparticle target binding in a syngeneic glioma mouse model. Nanoscale. 14 (15), 5678-5688 (2022).
  17. Wartchow, K. M., et al. Treatment with cyclic AMP activators reduces glioblastoma growth and invasion as assessed by two-photon microscopy. Cells. 10 (3), 556 (2021).
  18. Jiang, L. W., et al. Label-free detection of fibrillar collagen deposition associated with vascular elements in glioblastoma multiforme by using multiphoton microscopy. J Microsc. 265 (2), 207-213 (2017).
  19. Chen, Z., Ross, J. L., Hambardzumyan, D. Intravital 2-photon imaging reveals distinct morphology and infiltrative properties of glioblastoma-associated macrophages. Proc Natl Acad Sci U S A. 116 (28), 14254-14259 (2019).
  20. Zhang, Y. S., et al. Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy. Theranostics. 3 (8), 532-543 (2013).
  21. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9 (7), 676-682 (2012).
  22. Hoeferlin, G. F., Menendez, D. M., Krebs, O. K., Capadona, J. R., Shoffstall, A. J. Assessment of thermal damage from robot-drilled craniotomy for cranial window surgery in mice. J Vis Exp. 189, 64188 (2022).
  23. Holtmaat, A., et al. high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc. 4 (8), 1128-1144 (2009).
  24. Heo, C., et al. A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Sci Rep. 6, 27818 (2016).
  25. Kim, T. H., et al. Long-term optical access to an estimated one million neurons in the live mouse cortex. Cell Rep. 17 (12), 3385-3394 (2016).
  26. Kılıç, K., et al. Chronic cranial windows for long term multimodal neurovascular imaging in mice. Front Physiol. 11, 612678 (2021).
  27. Helm, P. J., Ottersen, O. P., Nase, G. Analysis of optical properties of the mouse cranium-implications for in vivo multi photon laser scanning microscopy. J Neurosci Methods. 178 (2), 316-322 (2009).
  28. Lu, W., Sun, Q., Wan, J., She, Z., Jiang, X. G. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 66 (24), 11878-11887 (2006).
  29. Zhang, B., et al. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials. 34 (36), 9171-9182 (2013).
  30. Xin, H., et al. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ɛ-caprolactone) nanoparticles: In vitro and in vivo evaluation. Int J Pharm. 402 (1-2), 238-247 (2010).
  31. Valable, S., et al. In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma. Neuroimage. 40 (2), 972 (2008).
  32. Jia, Y., et al. Phototheranostics: Active targeting of orthotopic glioma using biomimetic proteolipid nanoparticles. ACS Nano. 13 (1), 386-398 (2021).
  33. Asan, L., et al. Cellular correlates of gray matter volume changes in magnetic resonance morphometry identified by two-photon microscopy. Sci Rep. 11, 4234 (2021).
check_url/de/66304?article_type=t

Play Video

Diesen Artikel zitieren
Nernekli, K., Mangarova, D. B., Shi, Y., Varniab, Z. S., Chang, E., Tikenogullari, O. Z., Pisani, L., Tikhomirov, G., Wang, G., Daldrup-Link, H. E. Two-Photon Intravital Microscopy of Glioblastoma in a Murine Model. J. Vis. Exp. (205), e66304, doi:10.3791/66304 (2024).

View Video