Summary

Registro electrofisiológico en el Drosophila Embrión

Published: May 21, 2009
doi:

Summary

Registros electrofisiológicos de<em> Drosophila</em> Embriones permite realizar análisis musculares y de las propiedades eléctricas de neuronas, así como la caracterización funcional de la sinaptogénesis en la unión neuromuscular y glutamatérgicas centrales colinérgicas y las sinapsis GABAérgicas.

Abstract

Drosophila es un modelo genético de primera para el estudio de ambos el desarrollo embrionario y funcional neurociencia. Tradicionalmente, estos campos son muy aislados unos de otros, con historias en gran medida independiente y la comunidad científica. Sin embargo, la relación entre estos campos por lo general diferentes programas de desarrollo es la base de adquisición de las propiedades funcionales de señalización eléctrica y la diferenciación de las sinapsis químicas funcional durante las fases finales de la formación de circuitos neuronales. Esta interfaz es una zona muy importante para la investigación. En Drosophila, estas fases de desarrollo funcional se producen durante un período de <8 horas (a 25 ° C) durante el último tercio de la embriogénesis. Este período de desarrollo tardío fue considerado durante mucho tiempo difíciles de investigación debido a la deposición de una cutícula dura, epidérmico impermeable. Un avance avance fue la aplicación de agua de polimerización pegamento quirúrgico que puede aplicarse localmente a la cutícula para permitir la disección controlada de la última etapa de embriones. Con una incisión longitudinal dorsal, el embrión puede ser en plano, dejando al descubierto el cordón nervioso ventral y la musculatura de la pared del cuerpo para la investigación experimental. Plenario de células patch-clamp técnicas se pueden utilizar para grabar en las neuronas de forma individual de identificación y los músculos somáticos. Estas configuraciones de grabación se han utilizado para realizar un seguimiento de la aparición y maduración de las corrientes iónicas y la propagación del potencial de acción, tanto en las neuronas y los músculos. Mutantes genéticos que afectan a estas propiedades eléctricas se han caracterizado para revelar la composición molecular de los canales iónicos y complejos de señalización asociados, y para empezar la exploración de los mecanismos moleculares de la diferenciación funcional. Se prestará especial atención ha sido el montaje de las conexiones sinápticas, tanto en el sistema nervioso central y la periferia. El glutamatérgica unión neuromuscular (UNM) es más accesible a una combinación de imágenes ópticas y de registro electrofisiológico. Un electrodo de succión de vidrio se utiliza para estimular el nervio periférico, con la excitación de unión actual (EJC) las grabaciones realizadas en la tensión de los enganches del músculo. Esta configuración de la grabación se ha utilizado para trazar la diferenciación funcional de la sinapsis, y realizar un seguimiento de la aparición y maduración de las propiedades de liberación de glutamato presináptica. Además, las propiedades postsinápticos se puede probar de forma independiente a través de iontoforesis o la aplicación de presión de glutamato directamente a la superficie del músculo, para medir la aparición y maduración de los campos receptores de glutamato. Por lo tanto, ambos elementos pre y postsinápticos se puede controlar por separado o en combinación durante la sinaptogénesis embrionarias. Este sistema ha sido muy utilizada para aislar y caracterizar mutantes genéticos que impiden la formación de sinapsis embrionario, por lo que revelan los mecanismos moleculares que regulan la especificación y diferenciación de las sinapsis y conexiones sinápticas propiedades funcionales de señalización.

Protocol

Parte 1: Equipos y Suministros Registro electrofisiológico de embriones de Drosophila requiere en primer lugar el dominio de las técnicas de disección de embriones, que se describen en otro video Jove. Registro electrofisiológico de embriones de Drosophila utiliza configuraciones estándar de parches de grabación de sujeción. Patch clamp equipo de grabación y el software adecuado para muchas otras preparaciones que también es adecuado para la grabación a partir de embrione…

Discussion

Registro electrofisiológico de embriones de Drosophila requiere de la manipulación manual y la disección. La salud de la preparación y la calidad como consecuencia de las grabaciones, depende de un ser capaz de preparar de forma rápida y ordenada de los tejidos frágiles embrionarias para la grabación, y luego ejecutar el experimento. Experimentadores debe dominar tanto la disección de embriones y la electrofisiología de patch clamp antes de tratar de hacer frente a ambos a la vez.

<p class="jove_co…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

KB es apoyado por el NIH subvención GM54544.

Referencias

  1. Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K., Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci. 2, 965-971 (1999).
  2. Auld, V. J., Fetter, R. D., Broadie, K., Goodman, C. S. Gliotactin a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila. Cell. 81, 757-767 (1995).
  3. Baines, R. A., Bate, M. Electrophysiological development of central neurons in the Drosophila embryo. J. Neurosci. 18, 4673-4683 (1998).
  4. Baines, R. A., Robinson, S. G., Fujioka, M., Jaynes, J. B., Bate, M. Postsynaptic expression of tetanus toxin light chain blocks synaptogenesis in Drosophila. Curr. Biol. 9, 1267-1270 (1999).
  5. Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T., Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523-1531 (2001).
  6. Bate, M. The embryonic development of the larval muscles in Drosophila. Development. 110, 791-804 (1990).
  7. Bate, M., Martinez Arias, A., Bate, M., Martinez Arias, A. . The Development of Drosophila melanogaster. , (1993).
  8. Baumgartner, S., JT, L. i. t. t. l. e. t. o. n., Broadie, K., MA, B. h. a. t., Harbecke, R., JA, L. e. n. g. y. e. l., Chiquet-Ehrismann, R., Prokop, A., Bellen, H. J. A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell. 87, 1059-1068 (1996).
  9. AH, B. r. a. n. d. Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118, 401-415 (1993).
  10. Brand, A. GFP as a cell and developmental marker in the Drosophila nervous system. Methods Cell Biol. 58, 165-181 (1999).
  11. Broadie, K., Sullivan, W., Ashburner, M., Hawley, R. S. Electrophysiological Approaches to the Neuromusculature. Drosophila Protocols. , 273-296 (2000).
  12. Broadie, K., Bate, M. Development of the embryonic neuromuscular synapse of Drosophila melanogaster. J. Neurosci. 13, 144-166 (1993a).
  13. Broadie, K., Bate, M. Development of larval muscle properties in the embryonic myotubes of Drosophila melanogaster. J. Neurosci. 13, 167-180 (1993b).
  14. Broadie, K., Bate, M. Activity-dependent development of the neuromuscular synapse during Drosophila embryogenesis. Neuron. 11, 607-619 (1993c).
  15. Broadie, K., Bate, M. Synaptogenesis in the Drosophila embryo: innervation directs receptor synthesis and localization. Nature. 361, 350-353 (1993d).
  16. Broadie, K., Bellen, H. J., DiAntonio, A., Littleton, J. T., Schwarz, T. L. The absence of Synaptotagmin disrupts excitation-secretion coupling during synaptic transmission. Proc. Natl. Acad. Sci. USA. 91, 10727-10731 (1994).
  17. Broadie, K., Prokop, A., Bellen, H. J., O’Kane, C. J., Schulze, K. L., Sweeney, S. T. Syntaxin and Synaptobrevin function downstream of vesicle docking in Drosophila. Neuron. 15, 663-673 (1995).
  18. Broadie, K., Rushton, E., Skoulakis, E. C. M., Davis, R. L. e. o. n. a. r. d. o. a 14-3-3 protein involved in learning, regulates presynaptic function. Neuron. 19, 391-402 (1997).
  19. Broadie, K., Skaer, H., Bate, M. Whole-embryo culture of Drosophila: development of embryonic tissues in vitro. Roux’s Arch. Develop. Biol. 201, 364-375 (1992).
  20. Campos-Ortega, J., Hartenstein, V. . The embryonic development of Drosophila melanogaster. , (1985).
  21. Deitcher, D. L., Ueda, A., Stewart, B. A., Burgess, R. W., Kidokoro, Y., Schwartz, T. L. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J. Neurosci. 18, 2028-2039 (1998).
  22. Featherstone, D. E., Broadie, K. Surprises from Drosophila: genetic mechanisms of synaptic development and plasticity. Brain Res. Bull. 53, 501-511 (2000).
  23. Featherstone, D. E., Rushton, E. M., Hilderbrand-Chae, M., Phillips, A. M., Jackson, F. R., Broadie, K. Presynaptic glutamic acid decarboxylase is required for induction of the postsynaptic receptor field at a glutamatergic synapse. Neuron. 27, 71-84 (2000).
  24. Featherstone, D. E., Davis, W. S., Dubreuil, R. R., Broadie, K. Drosophila alpha- and beta-spectrin mutations disrupt presynaptic neurotransmitter release. J Neurosci. 21, 4215-4224 (2001).
  25. Featherstone, D. E., Rushton, E., Broadie, K. Developmental regulation of glutamate receptor field size by nonvesicular glutamate release. Nat Neurosci. 5, 141-146 (2002).
  26. Featherstone, D. E., Rushton, E., Rohrbough, J., Liebl, F., Karr, J., Sheng, Q., Rodesch, C. K., Broadie, K. An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction. J. Neurosci. 25, 3199-3208 (2005).
  27. Fergestad, T., Davis, W. S., Broadie, K. The stoned proteins regulate synaptic vesicle recycling in the presynaptic terminal. J Neurosci. 19, 5847-5860 (1999).
  28. Fergestad, T., Wu, M. N., Schulze, K. L., Lloyd, T. E., Bellen, H. J., Broadie, K. Targeted mutations in the syntaxin H3 domain specifically disrupt SNARE complex function in synaptic transmission. J Neurosci. 21, 9142-9150 (2001).
  29. Fergestad, T., Broadie, K. Interaction of stoned and synaptotagmin in synaptic vesicle endocytosis. J Neurosci. 21, 1218-1227 (2001).
  30. Goodman, C. S., Doe, C. Q., Bate, M., Martinez Arias, A. Embryonic Development of the Drosophila Central Nervous System. In The Development of Drosophila melanogaster. , 1131-1206 (1993).
  31. Harrison, S. D., Broadie, K., Goor, J. v. a. n. d. e., Rubin, G. M. Mutations in the Drosophila Rop gene suggest a function in general secretion and synaptic transmission. Neuron. 13, 555-566 (1994).
  32. Huang, F. D., Woodruff, E., Mohrmann, R., Broadie, K. Rolling blackout is required for synaptic vesicle exocytosis. J. Neurosci. 26, 2369-2379 (2006).
  33. Jan, L. Y., Jan, Y. N. Properties of the larval neuromuscular junction in Drosophila melanogaster. J. Physiol. 262, 189-214 (1976).
  34. Jan, L. Y., Jan, Y. N. L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J. Physiol. 262, 215-236 (1976b).
  35. Kidokoro, Y., Nishikawa, K. I. Miniature endplate currents at the newly formed neuromuscular junction in Drosophila embryos and larvae. Neuroscience Research. 19, 143-154 (1994).
  36. Landgraf, M., Bossing, T., Technau, G. M., Bate, M. The origin, location, and projections of the embryonic abdominal motorneurons of Drosophila. J. Neurosci. 17, 9642-9655 (1997).
  37. Mohrmann, R., Matthies, H. J., Woodruff III, E., Broadie, K. Stoned B mediates sorting of integral synaptic vesicle proteins. Neurociencias. 153, 1048-1063 (2008).
  38. Nishikawa, K. I., Kidokoro, Y. Junctional and extrajunctional glutamate receptor channels in Drosophila embryos and larvae. J. Neurosci. 15, 7905-7915 (1995).
  39. Renden, R., Berwin, B., Davis, W., Ann, K., Chin, C. T., Kreber, R., Ganetzky, B., Martin, T. F., Broadie, K. Drosophila CAPS is an essential gene that regulates dense-core vesicle release and synaptic vesicle fusion. Neuron. 31, 421-437 (2001).
  40. Rohrbough, J., Broadie, K. Electrophysiological Analysis of Synaptic Transmission in Central Neurons of Drosophila Larvae. J. Neurophysiol. 88, 847-860 (2002).
  41. Rohrbough, J., Rushton, E., Palanker, L., Woodruff, E., Matthies, H. J., Acharya, U., Acharya, J. K., Broadie, K. Ceramidase regulates synaptic vesicle exocytosis and trafficking. J. Neurosci. 24, 7789-7803 (2004).
  42. Rohrbough, J., Rushton, E., Woodruff, E. 3. r. d., Fergestad, T., Vigneswaran, K., Broadie, K. Presynaptic establishment of the synaptic cleft extracellular matrix is required for postsynaptic differentiation. Genes Dev. 21, 2607-2628 (2007).
  43. Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J., Wu, C. F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol.. A175, 179-191 (1994).
  44. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H., O’Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron. 14, 341-351 (1995).
  45. Tsunoda, S., Salkoff, L. Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents. J. Neurosci. 15, 1741-1754 (1995).
  46. Ueda, A., Kidokoro, Y. Longitudinal body wall muscles are electrically coupled across the segmental boundary in the third instar larva of Drosophila melanogaster. Invertebrate Neuroscience. 1, 315-322 (1996).
  47. Wu, C. F., Haugland, F. N. Voltage clamp analysis of membrane currents in larval muscle fibers of Drosophila. J. Neurosci. 5, 2626-2640 (1985).
  48. Yan, Y., Broadie, K. In vivo assay of presynaptic microtubule cytoskeleton dynamics in Drosophila. J Neurosci Methods. 162, 198-205 (2007).
  49. Yoshikami, D., Okun, L. Staining of living presynaptic nerve terminals with selective fluorescent dyes. Nature. 310, 53-56 (1984).
  50. Zagotta, W. N., Brainard, M. S., Aldrich, R. W. Single-channel analysis of four distinct classes of potassium channels in Drosophila muscle. J. Neurosci. 8, 4765-4779 (1988).
  51. Zhang, Y. Q., Rodesch, C. K., Broadie, K. A living synaptic vesicle marker: synaptotagmin-GFP.. Genesis. 34, 142-145 (2002).

Play Video

Citar este artículo
Chen, K., Featherstone, D. E., Broadie, K. Electrophysiological Recording in the Drosophila Embryo. J. Vis. Exp. (27), e1348, doi:10.3791/1348 (2009).

View Video