Summary

インフルエンザのためのDNAマイクロアレイ上ampliPHOX比色検出

Published: June 09, 2011
doi:

Summary

ampliPHOX比色検出技術は、マイクロアレイの蛍光検出に安価な代替手段として提示されます。光重合に基づいて、ampliPHOXはわずか数分で肉眼で見える固体高分子スポットを生成します。結果はシンプルかつ強力なソフトウェアパッケージと一緒にして撮像し、自動的に解釈されます。

Abstract

DNAマイクロアレイは、病原体検出のための強力なツールとして浮上している。たとえば1-5、タイプとサブタイプのインフルエンザウイルスへの能力の多くの例が実証されている。6-11インフルエンザの同定およびサブタイピング、DNAマイクロアレイ上の両方の公共のアプリケーションを持っている健康と早期発見、迅速な介入、およびインフルエンザのパンデミックの影響を最小限に抑えるためのクリニック。従来の蛍光は、現在最も一般的に使用されるマイクロアレイの検出方法です。マイクロアレイ技術は、臨床使用に向けて進むにつれ、しかし、、1は蛍光に同様のパフォーマンス特性を発揮する低コストの検出技術と高価な計測機器を取り替えたりするとマイクロアレイアッセイをより魅力的で費用対効果になります。

ampliPHOX比色検出技術は、研究のアプリケーションを対象とし、そして蛍光マイクロアレイに必要な共焦点マイクロアレイスキャナに比べておおよそ十倍低い楽器のコストが主な利点と、従来の蛍光11の一桁内での検出限界を有している検出。もう一つの利点は、従来の蛍光器具と異なり、移植性と柔軟性を可能にする機器のコンパクトサイズです。重合技術は、蛍光検出のように本質的にリニアではないので、しかし、それは最高のような病原体検出アレイなどの特定配列の存在のYes /無応答が望まれる低密度マイクロアレイのアプリケーションに最適です。現在ampliPHOXの検出と互換性のある最高のスポットの密度は〜1800スポット/配列です。理由スポット密度の制限により、高密度マイクロアレイはampliPHOXの検出には適していません。

ここで、我々は、インフルエンザウイルスの検出と特性評価(FluChip)用に開発された低密度マイクロアレイ上での信号増幅の方法としてampliPHOX比色検出の技術を提示する。このプロトコルはampliPHOX検出の一つの具体的なアプリケーションとしてFluChip(DNAマイクロアレイ)を使用していますが、ビオチン化ターゲットを搭載したあらゆるマイクロアレイは、同様の方法で標識し、検出することができます。キャプチャする対象のマイクロアレイの設計とビオチン化は、ユーザーの責任です。ビオチン化したターゲットが、アレイ上に捕捉されると、ampliPHOXの検出は、最初にタグ付けすることにより、ストレプトアビジン標識コンジュゲート(ampliTAG)を持つ配列を行うことができます。モノマー溶液のampliPHOX Readerのインストゥルメント、重合を用いて、露光時に(ampliPHY)ampliTAG標識ターゲットを含む地域でのみ発生します。形成されたポリマーは、その後、簡単なソフトウェアパッケージ(ampliVIEW)を使用したイメージングと解析に続いて視覚的なコントラストを向上させるために、非毒性の溶液で染色することができます。起因する非抽出サンプルから全体FluChipアッセイは約6時間で行うことができ、上述のampliPHOX検出ステップは、約30分で完了することができます。

Protocol

1。 RT – PCRを用いたサンプルの増幅臨床材料やQIAcube自動核酸抽出のプラットフォームと組み合わせてキアゲンアプライウイルスのスピンのキットを用いてウイルス分離体からウイルスRNAを抽出する。抽出物を60μlの最終的な溶出容量で200μlの試料上で実行されます。 -70ストア抽出° Cまたは後で使用するために低い。 テンプレートのフリーエリアでは、製造業者のプロトコール?…

Discussion

ここで紹介するampliPHOX比色検出技術は、低密度マイクロアレイのアプリケーション用の単一のカラー蛍光検出に迅速に、安価な代替品です。 図1に模式的に示すように、検出原理は、光開始剤のラベルを使用する(1B)に基づいています。モノマー含有溶液(1C)、光照射の存在下で光重合開始剤(ampliTAGが)のみというラベルの領域(1D)の重合反応をトリガします。インフルエ?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

InDevRはこの作業に資金をNIH / NIAID U01AI070276とR43AI077112を認めている。

Materials

Reagent/equipment Manufacturer Catalog # Comments
Qiagen MinElute Virus Spin Kit Qiagen 57704 single 60 μl elution
QIAcube Qiagen 9001292 optional
ABI 9800 Fast Thermal Cycler Applied Biosystems 4441166  
Qiagen OneStep RT-PCR kit Qiagen 210210 kit dNTPs not used
2x Spotting Buffer InDevR Inc. MI-5007  
Biotinylated dNTP Mix InDevR Inc. MI-5009  
Lambda exonuclease Epicentre Biotechnologies LE032K 2500 U, 10U/μl
FluChip primer mix InDevR N/A not yet available for sale
Orbital Shaker Madell Technology ZD-9556-A  
Wash Bins InDevR Inc. MI-4002  
Wash Racks InDevR Inc. MI-4003  
2x Hybridization Buffer InDevR Inc. MI-5004  
Calibration Chips InDevR Inc. AP-5006  
Wash Buffers A-D InDevR Inc. MI-5005  
ampliRED InDevR Inc. AP-5004  
ampliTAG InDevR Inc. AP-5001  
2x ampliTAG Buffer InDevR Inc. AP-5002  
ampliPHY, ampliPHY enhancer InDevR Inc. AP-5003  

Referencias

  1. Kumar, R. M. The Widely Used Diagnostics “DNA-Microarray”-A Review. Amer J Inf Dis. 5, 207-218 (2009).
  2. Miller, M. B., Tang, Y. W. Basic Concepts of Microarrays and Potential Applications in Clinical Microbiology. Clin Microbiol Rev. 22, 611-633 (2009).
  3. Mikhailovich, V., Gryadunov, D., Kolchinsky, A., Makarov, A. A., Zasedatelev, A. DNA microarrays in the clinic: infectious diseases. BioEssays. 30, 673-682 (2008).
  4. Call, D. R. Challenges and opportunities for pathogen detection using DNA microarrays. Crit Rev Microbiol. 31, 91-99 (2005).
  5. Raoult, D., Fournier, P. E., Drancourt, M. What does the future hold for clinical microbiology. Nat Rev Microbiol. 2, 151-159 (2004).
  6. Dawson, E. D., Rowlen, K. L., Wang, Q., Tao, Y. J. MChip: A Single Gene Diagnostic for Influenza A. Influenza: Molecular Virology. , (2010).
  7. Gall, A., Hoffman, B., Harder, T., Grund, C., Ehricht, R., Beer, M. Rapid hemagglutinin subtyping and pathotyping of avian influenza viruses by a DNA microarray. J Virol Meth. 160, 200-205 (2009).
  8. Townsend, M. B., Dawson, E. D., Mehlmann, M., Smagala, J. A., Dankbar, D. M., Moore, C. L., Smith, C. B., Cox, N. J. FluChip: Experimental evaluation of a diagnostic influenza microarray. J Clin Microbiol. 44, 2863-2871 (2006).
  9. Wang, Z., Daum, L. T., Vora, G. J., Metzgar, D., Walter, E. A., Canas, L. C., Malanosky, A. P., Lin, B., Stenger, D. A. Identifying influenza viruses with resequencing arrays. Emerg Inf Dis. 12, 638-646 (2006).
  10. Kessler, N., Ferraris, O., Palmer, K., Marsh, W., Steel, A. Use of the DNA Flow-Thru Chip, a three-dimensional biochip, for typing and subtyping of influenza viruses. J Clin Microbiol. 42, 2173-2185 (2004).
  11. Kuck, L. R., Taylor, A. W. Photopolymerization as an innovative detection technique for low-density microarrays. Biotechniques. 45, 179-186 (2008).
  12. Avens, H. J., Bowman, C. N. Development of fluorescent polymerization-based signal amplification for sensitive and non-enzymatic biodetection in antibody arrays. Acta Biomat. 6, 83-89 (2010).
  13. Sikes, H. D., Jenison, R., Bowman, C. N. Antigen detection using polymerization-based amplification. Lab on a Chip. 9, 653-656 (2008).
check_url/es/2682?article_type=t

Play Video

Citar este artículo
Moulton, K. R., Taylor, A. W., Rowlen, K. L., Dawson, E. D. ampliPHOX Colorimetric Detection on a DNA Microarray for Influenza. J. Vis. Exp. (52), e2682, doi:10.3791/2682 (2011).

View Video