Summary

Calcium Phosphate Transfection of Primary Hippocampal Neurons

Published: November 12, 2013
doi:

Summary

Calcium phosphate precipitation is a convenient and economical method for transfection of cultured cells. With optimization, it is possible to use this method on hard-to-transfect cells like primary neurons. Here we describe our detailed protocol for calcium phosphate transfection of hippocampal neurons cocultured with astroglial cells.

Abstract

Calcium phosphate precipitation is a convenient and economical method for transfection of cultured cells. With optimization, it is possible to use this method on hard-to-transfect cells like primary neurons. Here we describe our detailed protocol for calcium phosphate transfection of hippocampal neurons cocultured with astroglial cells.

Introduction

Primary neurons are one of the hardest cell types to transfect as they are postmitotic and are very sensitive to micro-environmental changes. There are four commonly used types of methods for expression of exogenous genes and short-hairpin RNAs (shRNAs) in these cells1. Each has its own advantages and disadvantages. For example, electroporation is usually performed on freshly isolated neurons2, as cells must be transferred into cuvettes for transfection. Virus infection can usually achieve very high efficiency3, but is more labor-intensive and risky for operators. Many lipid-mediated transfection reagents are available commercially, with varying degrees of success in neurons and different levels of cytotoxicity.

Calcium phosphate transfection represents a convenient and economical method for introducing foreign genes into neurons. The method was first used to introduce adenovirus DNA into mammalian cells by Graham and Van Der Eb (1973)4. Transfection was performed by mixing calcium chloride with recombinant DNA in a phosphate buffer. This allows the formation of DNA/calcium phosphate precipitates which, when gradually dropped onto a monolayer of cells, adhere to the cell surface, are taken up by endocytosis and finally enter the nucleus5. This process would lead to the expression of introduced foreign genes in the target cell. Typical efficiencies of calcium phosphate transfection range between 0.5-5%6-8. However, with careful optimization and consistent execution of the experimental protocol, it is possible to reach a transfection efficiency of almost 50%. Here we describe our detailed protocol for calcium phosphate transfection of primary hippocampal neurons, which are cocultured with astroglial cells in a sandwich format9.

Protocol

1. Preparing Rat Astrocyte Culture for Conditioned Media and Astrocyte-neuron Cocultures. Prepare dissection buffer (BSS, see Table 1 for recipe) and store at 4 °C until ready for use. Anesthetize neonatal rat pups (P0-P2) with isoflurane in a 500 ml beaker. When pups are immobile, spray with 70% ethanol and decapitate. Remove the brain. Hold the head firmly with a pair of Dumont #5 forceps, and use fine scissors to make a midline incision throug…

Representative Results

When the different parameters of transfection are optimized and carefully controlled from experiment to experiment, it is possible to obtain transfection efficiencies of up to 50%. Figure 1 shows a field of neurons that are transfected with GFP on DIV4. The field contains a total of 28 neurons, among which 16 were transfected. This represents an efficiency of over 50%. A sampling of other fields on the same coverslip shows the overall efficiency is around 50% (data not shown). With the astroglial cocultu…

Discussion

There are several key parameters that need to be carefully controlled for consistently successful transfections10,11. The most critical parameter for calcium phosphate transfection is the pH value of 2x HBS, which in our hands usually varies between 7.10-7.15. We recommend making three batches of stocks with pH values in 0.05 increments to account for the difference between pH meters. Alternatively, the Clontech mammalian transfection kit provides 2x HBS that consistently yields good efficiency. Keep in m…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work is supported by NIH grant NS065183 and start-up funds from the Rutgers Robert Wood Johnson Medical School.

Materials

Dumont #5 forceps Fine Science Tools 11251-20
Fine scissors Fine Science Tools 14090-09 straight / sharp 8.5 cm
Vannas-Tubinger spring scissors Fine Science Tools 15008-08 angled / sharp / 8.5 cm / 5 mm cutting edge
Standard pattern forceps Fine Science Tools 11000-16
Student surgical scissors Fine Science Tools 91401-14 blunt / 14.5 cm
Spring scissors Fine Science Tools 15006-09 angled to side / 9 cm / 10 mm cutting edge
Isoflurane Webster Veterinary 14043-225-06
Poly-L-lysine Sigma P2636
MEM Sigma M2279
100 mM Sodium pyruvate Sigma S8636
Glucose Sigma G8270
10x HBSS Sigma H4385
1 M HEPES, pH 7.3 Gibco/Invitrogen 15630-080
GlutaMAX Gibco/Invitrogen 35050-061
Neurobasal Media Gibco/Invitrogen 21130-049
B27 Supplement (50x) Gibco/Invitrogen 17504-044
N2 Supplement Gibco/Invitrogen 17502-048
Ovalbumin Sigma A5503
Penicillin/Streptomycin Gibco/Invitrogen 15070-063
2.5% Trypsin Gibco/Invitrogen 15090-046
DNase I Sigma DN-25
Cytosine arabinoside Calbiochem/EMD Millipore 251010
Kynurenic acid Sigma K3375

Referencias

  1. Karra, D., Dahm, R. Transfection techniques for neuronal cells. J. Neurosci. 30, 6171-6177 (2010).
  2. Zeitelhofer, M., et al. High-efficiency transfection of mammalian neurons via nucleofection. Nat. Protoc. 2, 1692-1704 (2007).
  3. Janas, J., Skowronski, J., Van Aelst, L. Lentiviral delivery of RNAi in hippocampal neurons. Method Enzymol. 406, 593-605 (2006).
  4. Graham, F. L., vander Eb, A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 52, 456-467 (1973).
  5. Craig, A. M., Banker, G. a. G. K. Transfecting cultured neurons. Culturing Nerve Cells. , (1998).
  6. Alavian, K. N., et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol. 13, 1224-1233 (2011).
  7. Zhang, Y., et al. Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P(2) and PI(5)P. EMBO J. 31, 3442-3456 (2012).
  8. Dudek, H., Ghosh, A., Greenberg, M. E. Calcium phosphate transfection of DNA into neurons in primary culture. Curr. Protoc. Neurosci. Chapter 3, Unit 3 11 (2001).
  9. Goslin, K. A. H., Banker, G., Banker, G. a. G. K. Rat Hippocampal Neurons in Low-Density Culture. Culturing Nerve Cells. , (1998).
  10. Kohrmann, M., et al. Fast, convenient, and effective method to transiently transfect primary hippocampal neurons. J. Neurosci. Res. 58, 831-835 (1999).
  11. Jiang, M., Chen, G. High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nat. Protoc. 1, 695-700 (2006).
  12. Goetze, B., Grunewald, B., Baldassa, S., Kiebler, M. Chemically controlled formation of a DNA/calcium phosphate coprecipitate: application for transfection of mature hippocampal neurons. J. Neurobiol. 60, 517-525 (2004).
check_url/es/50808?article_type=t

Play Video

Citar este artículo
Sun, M., Bernard, L. P., DiBona, V. L., Wu, Q., Zhang, H. Calcium Phosphate Transfection of Primary Hippocampal Neurons. J. Vis. Exp. (81), e50808, doi:10.3791/50808 (2013).

View Video