Summary

Isolierung und funktionelle Charakterisierung der Menschen ventrikuläre Kardiomyozyten von Fresh Chirurgische Proben

Published: April 21, 2014
doi:

Summary

Aktuelle Erkenntnisse über die zellulären Grundlagen von Herzerkrankungen meist stützt sich auf Studien an Tiermodellen. Hier beschreiben wir und Validierung einer neuen Methode, um einzelne lebende Herzmuskelzellen von kleinen chirurgischen Proben menschlichen Myokard zu erhalten. Menschen Kardiomyozyten können für elektrophysiologische Studien-und Drogentests verwendet werden.

Abstract

Kardiomyozyten von erkrankten Herzen sind komplexe Umbauprozesse, die Änderungen in der Zellstruktur, Erregung Kontraktion Kupplung und Membranionenströme unterzogen. Diese Veränderungen sind wahrscheinlich für das erhöhte Risiko und die arrhythmogene Kontraktions Veränderungen, die zu den systolischen und diastolischen Dysfunktion bei Herzpatienten verantwortlich zu sein. Allerdings hat die meisten Informationen über die Veränderungen der Myozyten-Funktion im Herzerkrankungen aus Tiermodellen zu kommen.

Hier beschreiben wir ein Protokoll und zu validieren, um lebensfähige Muskelzellen von kleinen chirurgischen Proben von ventrikulären Myokard von Patienten, die Herzchirurgie Operationen zu isolieren. Das Protokoll wird im Detail beschrieben. Elektrophysiologischen und intrazellulären Calciummessungen berichtet, um die Durchführbarkeit einer Anzahl von Einzelzellmessungen in menschlichen Kardiomyozyten mit diesem Verfahren erhalten zu demonstrieren.

Das Protokoll berichtet erWieder kann für zukünftige Untersuchungen der zellulären und molekularen Basis der funktionellen Veränderungen des menschlichen Herzens in Gegenwart verschiedener Herzkrankheiten sein. Außerdem kann diese Methode verwendet, um neue therapeutische Targets auf zellulärer Ebene zu identifizieren und die Wirksamkeit der neuen Verbindungen auf die menschliche Herzmuskelzellen zu testen, mit direktem Translationswert werden.

Introduction

Dissection der elektrophysiologischen Eigenschaften des Herzmuskels hat sich deutlich nach der Entwicklung von Techniken für die einzelnen Herzmuskelzellen Isolation vorangekommen. Die jüngsten Fortschritte im Verständnis der Herzkontraktion Anregung Kopplung (EC-Coupling) haben auch durch die Fähigkeit der Isolierung lebensfähigen Einzel Kardiomyozyten, die alle physiologischen Eigenschaften des intakten Gewebes behalten gemacht worden. Patch-Clamp-Verfahren werden routinemäßig verwendet, um die Funktion und pharmakologische Modulation von Herz sarkolemmalen Ionenströme zu untersuchen. Aufnahmen der intrazellulären Calcium-Dynamik mit Ca 2 +-sensitiven Farbstoffen werden auch regelmäßig auf einzelne Herzmuskelzellen aus einer Vielzahl von gesunden und kranken Modelle durchgeführt wird, liefert wichtige Daten über die Physiologie des EG-Kupplung als auch auf die pathologischen Veränderungen der intrazellulären Ca 2 + Homöostase, die zu mechanischen Beeinträchtigungen und erhöhte Belastung in arrhythmogene Herzkrankheiten. Information aus diesen Studien ist entscheidend für das Verständnis der elektrophysiologischen und mechanischen Auswirkungen von Drogen in der Klinik. Es gibt jedoch bestimmte Arten Unterschiede in den Transmembranströmen und in den EG-Kupplung Proteine, die für bestimmte Funktionen des Herzaktionspotentials und der Herzmechanik zu berücksichtigen. Während also Studien von Myozyten aus nicht-menschlichen Säugetieren isoliert haben die biophysikalischen Eigenschaften und physiologischen Rollen von spezifischen Transmembranionenkanäle und EC-Kopplung Proteine ​​aufgeklärt, sie sind nicht zwangsläufig relevanten Modelle der menschlichen Herzmuskelzellen. Isolation von lebensfähigen Muskelzellen aus menschlichen Herzmuskel ist daher unerlässlich, um die Pathophysiologie von Herzerkrankungen verstehen und Validierung neuer therapeutischer Ansätze.

Menschenvorhofgewebe ist leicht verfügbar, wie Vorhof Anhänge werden oft während der chirurgischen Verfahren verworfen. Erste quantitative Untersuchungen der erwachsenen menschlichen Herzaktionspotentiale und Ionen currents beschäftigt enzymatisch isolierten Vorhofzellen 1-4. Aufnahmen von Aktionspotentialen oder Ströme aus isolierten erwachsenen Menschen ventrikuläre Zellen wurden anschließend berichtet 3,5-10. Die meisten dieser Studien wurden Zellen aus explantierten Herzen gewonnen und verwendet entweder Collagenase-Perfusion einer Koronararterie Segment oder Belichtung von relativ großen Mengen an Kollagenase Exzidate isolierte Zellen zu erhalten. Diese Studien ermöglichte eine detaillierte Charakterisierung einer Anzahl von Transmembran-Ionenströme aus humanen Kardiomyozyten aus gesunden Herzen und von Patienten mit terminaler Herzinsuffizienz. Aufnahmen von L-Typ-Ca 2 +-Strom (I CA-L) 5-7, transiente Kalium-Auswärtsstrom (I to) 8, Einwärtsgleichrichter Kaliumstrom (I κ1) 8, die verschiedenen Komponenten des verzögerten Gleichrichter-Kaliumstrom (I κ ) 9 berichtet. Vorschüsse und Raffination vondie Isolationsverfahren 10, erlaubt eine eindeutige Charakterisierung der ionischen Basis der erhöhten arrhythmogene Potential in terminaler Herzinsuffizienz, bestehend aus Aktionspotential-Verlängerung 11 nach Depolarisationen 12 verzögert und erhöhte lustig Strom 13 führt zu diastolischen Depolarisation und Extrasystolen.

Erwachsene Herzmuskelzellen werden in der Regel von kleinen Tieren durch retrograde Perfusion des ganzen Herzens mit verschiedenen Enzymmischungen, eine Technik, die hohe Ausbeuten von Ca 2 +-Zellen tolerant 14 erzeugt isoliert. Isolierung von Herzmuskelzellen, die aus Fragmenten von Gewebe von Natur aus weniger erfolgreich wahrscheinlich wegen des begrenzten Zugangs zu einzelnen Enzyme Myozyten verglichen mit der durch Perfusion der Koronararterien erreicht. Wegen der sehr begrenzten Verfügbarkeit von Spenderherzen ungenutzt ist der einzige praktische Weg, um normale menschliche ventrikuläre Zellen auf einer regelmäßigen Basis zu erhalten, die durch enzymatische digestion der oft sehr kleinen Gewebefragmenten bei elektiven chirurgischen Verfahren ausgeschnitten. Die einzige menschliche Krankheitsmodell, die gründlich auf Zellebene charakterisiert worden ist terminaler Herzinsuffizienz aufgrund der Zugänglichkeit zu transplantierten Herzen. Allerdings tritt terminaler Herzinsuffizienz in einer Minderheit der Patienten und oft mit einem gemeinsamen Weg von schweren Umbau des Herzmuskelzellen, die relativ unabhängig von der zugrunde liegenden Ursache 15 ist. Die Fähigkeit, die Funktion der einzelnen Herzmuskelzellen von Patienten zu einem früheren nicht andernfalls Stadium der Erkrankung zu beurteilen ist entscheidend, um die spezifische Pathophysiologie verschiedener ererbte oder erworbene Zustände zu verstehen. Die hypertrophe Kardiomyopathie (HCM) ist ein beredtes Beispiel. HCM ist eine gemeinsame (1/500 Personen) vererbbare Herzerkrankung, die durch Herzhypertrophie, erhöhter arrhythmogene Risiko-und Kontraktions Änderungen aufgrund Ausflusstraktobstruktion und diastolischen Dysfunktion 16. Kardiomyozyten aus HCM Herzen undergo eine komplexe Umbauprozesse, die Änderungen in der Zellstruktur (Hypertrophie, myofibrillären Unordnung) und EC-Kupplung 17. Allerdings hat die meisten Informationen von Myozyten Dysfunktion bei HCM aus transgenen Tiermodellen zu kommen. Da nur eine Minderheit von HCM-Patienten entwickelt sich in Richtung Terminal Herzinsuffizienz und Herztransplantation benötigt, sind HCM Herzen sehr selten zur Zellisolierung mit Standard-Methoden zur Verfügung. Jedoch mindestens 30% der HCM-Patienten entwickeln obstruktive Symptome aufgrund massiver Blut Septumhypertrophie verändernde Ausflusstrakt Fluss während der Systole (HCM) 18. Die wirksamste verfügbare therapeutische Option für die Entlastung der Obstruktion in HCM ist die chirurgische Septum Myektomie: während dieser chirurgische Eingriff ist eine variable Größe oberen Teil der Scheidewand von trans Aorten-Ansatz entfernt. Dieser Teil des hypertrophierten Septum ist deshalb zur Zellisolierung aus dem frischen Gewebe zur Verfügung.

Verfahren zur Isolierung von menschlichen ventricular Muskelzellen von einzelnen, kleinen transvenous Endomyokardbiopsie Proben zuvor entwickelt und veröffentlicht 19. Wir implementierten eine Methode, um einzelne septalen Myozyten von Myokard-Proben von Patienten, die Herzchirurgie, einschließlich Patienten mit HCM unterziehen Septum Myektomie und Patienten, die sich Ventil Ersatzverfahren zu isolieren. Zusätzlich zu einer detaillierten Beschreibung der Trennprotokolls, repräsentativen elektrophysiologischen und Ca 2 +-Fluoreszenzmessungen vorgestellt werden, was die Lebensfähigkeit der isolierten humanen Kardiomyozyten und die Durchführbarkeit der Patch-Clamp-und intrazellulären Ca 2 +-Studien.

Protocol

Die Versuchsprotokolle auf menschlichem Gewebe wurden von der Ethikkommission der Universität Careggi-Krankenhaus (; erneuert Mai 2009 2006/0024713) zugelassen. Jeder Patient hat eine schriftliche Einverständniserklärung. 1. Solutions und Vorbereitung der Ausrüstung Lösungen werden in Tabelle 1 beschrieben. Ein vereinfachtes Flussdiagramm des Zellisolationsverfahren ist in Fig. 1 angegeben. <table border="0" cellpadding="0…

Representative Results

Das oben beschriebene Verfahren wurde verwendet, um die funktionellen Störungen von Kardiomyozyten aus der Scheidewand des Patienten mit hypertropher Kardiomyopathie (HCM) die Myektomie Operation unterzog isoliert charakterisieren, verglichen mit nicht andernfalls nicht hypertrophe chirurgischen Patienten 21. Die in diesem Abschnitt enthalten sind, aus diesem Werkstück 21 ab und sind hier als ein Beispiel, wie diese Technik verwendet, um die Änderungen der Herzmuskelzellfunktion bei Herzerkranku…

Discussion

Wir haben beschrieben und validiert, eine Methode, um praktikable Muskelzellen von chirurgischen Proben menschlichen Myokard zu isolieren. Ausgehend vom zuvor beschriebenen Protokolle, die erfolgreich an isolierten Zellen von Vorhof chirurgischen Proben, die Technik benutzt hatte, um eine Trennung von einzelnen tragfähige Muskelzellen von erkrankten Myokard entwickelt und fein abgestimmt. Frühe Berichte zeigten, dass Isolierung einzelner Kardiomyozyten aus Brocken von atriale und ventrikuläre Gewebe selektiv beeintr?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde von der EU (STREP Projekt 241577 "BIG HEART" 7. Europäischen Forschungsrahmenprogramm, CP), Menarini International Operations Luxemburg (AM), Telethon GGP07133 (CP) und Gilead Sciences (AM) unterstützt.

Materials

Potassium phosphate monobasic (KH2PO4) Sigma-Aldrich P9791 
Magnesium sulfate heptahydrate(MgSO4 * 7H2O) Sigma-Aldrich M1880 
HEPES Sigma-Aldrich H3375 
Adenosine Sigma-Aldrich A9251 
D-(+)-Glucose Sigma-Aldrich G8270 
Mannitol Sigma-Aldrich M4125 
Taurine Sigma-Aldrich T0625
Potassium hydroxide (KOH) Sigma-Aldrich P5958
Sodium chloride (NaCl) Sigma-Aldrich S7653
Potassium chloride (KCl) Sigma-Aldrich P9333 
Sodium phosphate dibasic (Na2HPO4) Sigma-Aldrich S7907 
Sodium bicarbonate (NaHCO3) Sigma-Aldrich S6297 
Potassium bicarbonate (KHCO3) Sigma-Aldrich 237205
Sodium pyruvate Sigma-Aldrich P2256 
2,3-Butanedione monoxime Sigma-Aldrich B0753 
Sodium hydroxide(NaOH) Sigma-Aldrich S8045 
L-Glutamic acid monopotassium salt monohydrate Sigma-Aldrich 49601
Pyruvic acid Sigma-Aldrich 107360
3-Hydroxybutyric acid Sigma-Aldrich 166898
Adenosine 5′-triphosphate dipotassium salt dihydrate (K2-ATP) Sigma-Aldrich A8937
Creatine Sigma-Aldrich C0780 
Succinic Acid Sigma-Aldrich S3674 
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) Sigma-Aldrich E0396 
Albumin from bovine serum Sigma-Aldrich A0281
Magnesium chloride (MgCl2) Sigma-Aldrich M8266 
Collagenase from Clostridium histolyticum, Type V Sigma-Aldrich C9263 
Proteinase, Bacterial, Type XXIV Sigma-Aldrich P8038
Calcium chloride solution, ~1 M in H2O Sigma-Aldrich 21115
Calcium chloride 0.1 M solution Sigma-Aldrich 53704
Potassium methanesulfonate Sigma-Aldrich 83000
FluoForte Reagent Enzo Life Sciences ENZ-52015
Powerload concentrate, 100X Life Technologies P10020
Perfusion Fast-Step System Warner Instruments VC-77SP
Amphotericin B solubilized Sigma-Aldrich A9528 
Multiclamp 700B patch-clamp amplifier Molecular Devices
Digidata 1440A Molecular Devices
pClamp10.0  Molecular Devices
Digestion Device CUSTOM CUSTOM The device is custome made in our laboratory using plastic tubes, cast Sylgard and a motor; it is described in detail in Fig 1 C-D and in Fig.7. We can provide further details if requested
Silicone elastomer for the digestion device's brushes Dow Corning SYLGARD® 184
Variable speed rotating motor for the digestion device Crouzet Crouzet 178-4765 
Mold for brushes casting N.A. N.A. The mold is custom made from standard PTFE 2.5 cm diameter rods

Referencias

  1. Dow, J. W., Harding, N. G., & Powell, T. Isolated cardiac myocytes. I. Preparation of adult myocytes and their homology with the intact tissue. Cardiovascular Research. 15, 483-514 (1981).
  2. Dow, J. W., Harding, N. G., & Powell, T. Isolated cardiac myocytes. II. Functional aspects of mature cells. Cardiovascular Research. 15, 549-579 (1981).
  3. Harding, S. E., et al. Species dependence of contraction velocity in single isolated cardiac myocytes. Cardioscience. 1, 49-53 (1990).
  4. Bustamante, J. O., Watanabe, T., Murphy, D. A., & McDonald, T. F. Isolation of single atrial and ventricular cells from the human heart. Canadian Medical Association Journal. 126, 791-793 (1982).
  5. Beuckelmann, D. J., Nabauer, M., & Erdmann, E. Characteristics of calcium-current in isolated human ventricular myocytes from patients with terminal heart failure. Journal of Molecular and Cellular Cardiology. 23, 929-937 (1991).
  6. Beuckelmann, D. J., Nabauer, M., & Erdmann, E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation. 85, 1046-1055 (1992).
  7. Cohen, N. M., & Lederer, W. J. Calcium current in single human cardiac myocytes. Journal of Cardiovascular Electrophysiology. 4, 422-437 (1993).
  8. Beuckelmann, D. J., Nabauer, M., & Erdmann, E. Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circulation Research. 73, 379-385 (1993).
  9. Virag, L., et al. The slow component of the delayed rectifier potassium current in undiseased human ventricular myocytes. Cardiovascular Research. 49, 790-797 (2001).
  10. Nanasi, P. P., Varro, A., & Lathrop, D. A. Isolation of human ventricular and atrial cardiomyocytes: technical note. Cardioscience. 4, 111-116 (1993).
  11. Benitah, J. P., et al. Slow inward current in single cells isolated from adult human ventricles. Pflugers Archiv: European Journal of Physiology. 421, 176-187 (1992).
  12. Verkerk, A. O., et al. Ionic mechanism of delayed afterdepolarizations in ventricular cells isolated from human end-stage failing hearts. Circulation. 104, 2728-2733 (2001).
  13. Cerbai, E., et al. Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. Circulation. 95, 568-571 (1997).
  14. Kohncke, C., et al. Isolation and kv channel recordings in murine atrial and ventricular cardiomyocytes. Journal of Visualized Experiments: JoVE, doi:10.3791/50145 (2013).
  15. Tomaselli, G. F., & Marban, E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovascular Research. 42, 270-283 (1999).
  16. Maron, B. J. Hypertrophic cardiomyopathy: a systematic review. JAMA: The Journal of the American Medical Association. 287, 1308-1320 (2002).
  17. Olivotto, I., et al. The many faces of hypertrophic cardiomyopathy: from developmental biology to clinical practice. Journal of Cardiovascular Translational Research. 2, 349-367, doi:10.1007/s12265-009-9137-2 (2009).
  18. Maron, M. S., et al. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation. 114, 2232-2239, doi:10.1161/CIRCULATIONAHA.106.644682 (2006).
  19. Peeters, G. A., et al. Method for isolation of human ventricular myocytes from single endocardial and epicardial biopsies. The American Journal of Physiology. 268, H1757-1764 (1995).
  20. Lippiat, J. D. Whole-cell recording using the perforated patch clamp technique. Methods Mol Biol. 491, 141-149, doi:10.1007/978-1-59745-526-8_11 (2008).
  21. Coppini, R., et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. 127, 575-584, doi:10.1161/CIRCULATIONAHA.112.134932 (2013).
  22. Kuusisto, J., et al. Low-grade inflammation and the phenotypic expression of myocardial fibrosis in hypertrophic cardiomyopathy. Heart. 98, 1007-1013, doi:10.1136/heartjnl-2011-300960 (2012).
  23. Yan, G. X., et al. Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-QT syndrome : direct evidence from intracellular recordings in the intact left ventricular wall. Circulation. 103, 2851-2856 (2001).
  24. Yue, L., Feng, J., Li, G. R., & Nattel, S. Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. The American Journal of Physiology. 270, H2157-2168 (1996).
  25. Li, G. R., Feng, J., Yue, L., Carrier, M., & Nattel, S. Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circulation research. 78, 689-696 (1996).
  26. Viswanathan, P. C., Shaw, R. M., & Rudy, Y. Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation. 99, 2466-2474 (1999).
  27. Volders, P. G., et al. Probing the contribution of IKs to canine ventricular repolarization: key role for beta-adrenergic receptor stimulation. Circulation. 107, 2753-2760, doi:10.1161/01.CIR.0000068344.54010.B3 (2003).
  28. Sanguinetti, M. C., Jurkiewicz, N. K., Scott, A., & Siegl, P. K. Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. Mechanism of action. Circulation Research. 68, 77-84 (1991).
  29. Coppini, R., et al. A translational approach to treatment of hypertrophic cardiomyopathy: pre-clinical rationale and design of a prospective randomized pilot trial with ranolazine. Circulation. 125, 1, doi:10.1161/CIR.0b013e31824fcd6b (2012).
check_url/es/51116?article_type=t

Play Video

Citar este artículo
Coppini, R., Ferrantini, C., Aiazzi, A., Mazzoni, L., Sartiani, L., Mugelli, A., Poggesi, C., Cerbai, E. Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples. J. Vis. Exp. (86), e51116, doi:10.3791/51116 (2014).

View Video