Summary

收购高精度熟练的前肢到达任务大鼠

Published: June 22, 2015
doi:

Summary

A paradigm is presented to analyze the acquisition of a high-precision skilled forelimb reaching task in rats.

Abstract

Movements are the main measurable output of central nervous system function. Developing behavioral paradigms that allow detailed analysis of motor learning and execution is of critical importance in order to understand the principles and processes that underlie motor function. Here we present a paradigm to study movement acquisition within a daily session of training (within-session) representing the fast learning component and primary acquisition as well as skilled motor learning over several training sessions (between-session) representing the slow learning component and consolidation of the learned task. This behavioral paradigm increases the degree of difficulty and complexity of the motor skill task due to two features: First, the animal realigns its body prior to each pellet retrieval forcing renewed orientation and preventing movement execution from the same angle. Second, pellets are grasped from a vertical post that matches the diameter of the pellet and is placed in front of the cage. This requires a precise grasp for successful pellet retrieval and thus prevents simple pulling of the pellet towards the animal. In combination with novel genetics, imaging and electrophysiological technologies, this behavioral method will aid to understand the morphological, anatomical and molecular underpinnings of motor learning and memory.

Introduction

运动控制是中枢神经系统(CNS)的核心功能。 Motricity公司是CNS功能的主要衡量输出和主​​可能性为个人与外部世界进行交互。理解运动功能的原理和背后的电动机任务的学习是目前在神经科学的大挑战之一的机制。购置一台新电机的任务后,形态,生理和分子的变化被发现。例如,形状和突触的数目改变以响应熟练马达训练1-5,和突触机械的功能改变动作的学习后观察。突触反应是在经训练的运动皮层相比,同样的动物或从未经训练的动物6,7-响应的未经训练的半球前肢-表示区域的连接更高。电观察也表明,长时程增强(LTP)和长-term抑制(LTD)一样的机制发生了新的运 ​​动技能的学习过程中,那突触操作,这是LTP和LTD。饱和的限制边界之间限定的范围内,被修改8。此外,已经表明,活性标记和可塑性促进分子如c-fos的GAP-43,或BDNF而且可塑性抑制分子例如为学习相关的神经可塑性9-16的Nogo-A显示调节作用。

对更好地理解运动学习的基本机制的这些进展只能与使用行为范式,使收购一个新的运 ​​动技能, 比如,熟练前肢深远的精确控制来实现。只有一个结构良好的行为的任务允许监视并捕捉后的学习和执行各自的任务发生的相关变化。在这里,我们在视觉上表明本领域技术前肢的修改后的版本大鼠改编自布伊特拉戈 17所呈现的范例单颗粒到达任务允许移动收购的日常训练(在会议期间)内的分析代表了快速学习成分和主要收购以及熟练的运动学习过几次会议代表所学的任务18的慢学习成分和维护(之间的会话)。重要的是,这种行为模式增加了难度和复杂的运动技能的任务,因为两个特征的程度:首先,老鼠被训练把握每一个后转身的轴,从而调整其身前的下一个颗粒范围和更新体内取向,从而防止从相同的角度恒定运动执行。第二,小球被检索从一个垂直柱放置在笼子前面。由于小直径的帖子,小球很容易被踢掉需要精确把握成功的检索和preventing简单拉向动物的颗粒。

如此复杂的行为测试可以更深入地了解运动学习的基本机制。相比小鼠,大鼠是在复杂的行为任务的性能优越,因此更适合于复杂的范例如本研究中提出。考虑可用于大鼠19,20的增加的遗传可能性,精确和良好控制的行为测试方法与遗传操作,成像和生理技术的结合代表了强大的工具箱,以便更好地了解电动机的学习和记忆的神经生物学基础。

Protocol

所有实验均按照苏黎世州,瑞士的兽医办公室的指导进行。 1.动物处理和习惯化动物处理注意:在实验开始前5天,每日执行步骤1.1.1。 对于行为实验,习惯于在动物实验者。每天有处理会话持久每头牲畜10-15分钟。清洁每只动物的会议结束后的框。 最初,将实验者的手伸进笼子允许动物的探索和闻到熟悉该项实验者。 接着,轻轻?…

Representative Results

成功的运动技能采集只能通过一贯的做法来实现。尽管仔细考虑的所有方面,一些老鼠不学习任务( 图2)。这些“非学习者的任一缺乏动力导致粒料检索少数或缺席尝试从实验开始或通常失去兴趣达成为领先粒料连续失败的尝试。与此相反,一些动物显示出导致overhasty侵略性和过度激励的行为,并冲抓,导致失败的尝试。不成功的学习者的第三组是那些以高成功率,不要使显著的改…

Discussion

在这项研究中所示的范例适于从布伊特拉戈等人 18和不同于经典单粒料达到主要在两个方面的范例17:

首先,研究内会话的改进允许在一个单一的一天的学习任务,它可以提供一个不同的级别的信息,如快速学习组件的调查相比,由平均每天值表示的慢学习组件的分析( 见图34)。二,行为范式这里提出增加难度和复杂的运?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这一工作是由瑞士国家科学基金会(批准31003A-149315-1到MES和格兰特IZK0Z3-150809到亚利桑那州), 以AZ海蒂Demetriades基金会 ,以MES的欧洲研究理事会('Nogorise')和赠款克里斯托弗和Dana里夫基金会(CDRF)。

Materials

1 Training Box Self Made
2 Pedestal Self Made
3 Sugar Pellets 45-mg dustless precision pellets, TSE Systems Intl. Group
4 Animals 5-6 week old Sprague Dawley Male Rats
5 Laptop Hewlett Packard
6 Stop Watch
7 Forceps Fine Science Tools (FST)
8 Software Excel (Microsoft), GraphPad Prism (GraphPad)
9 Weighing scale
10 Counter

Referencias

  1. Fu, M., Yu, X., Lu, J., Zuo, Y. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature. 483, 92-95 (2012).
  2. Fu, M., Zuo, Y. Experience-dependent structural plasticity in the cortex. Trends in neurosciences. 34, 177-187 (2011).
  3. Holtmaat, A., Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nature reviews. Neuroscience. 10, 647-658 (2009).
  4. Xu, T., et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 462, 915-919 (2009).
  5. Yu, X., Zuo, Y. Spine plasticity in the motor cortex. Current opinion in neurobiology. 21, 169-174 (2011).
  6. Rioult-Pedotti, M. S., Friedman, D., Donoghue, J. P. . Learning-induced LTP in neocortex. Science. 290, 533-536 (2000).
  7. Rioult-Pedotti, M. S., Friedman, D., Hess, G., Donoghue, J. P. Strengthening of horizontal cortical connections following skill learning. Nature neuroscience. 1, 230-234 (1998).
  8. Rioult-Pedotti, M. S., Donoghue, J. P., Dunaevsky, A. Plasticity of the synaptic modification range. Journal of neurophysiology. 98, 3688-3695 (2007).
  9. Fritsch, B., et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 66, 198-204 (2010).
  10. Ghiani, C. A., Ying, Z., de Vellis, J., Gomez-Pinilla, F. Exercise decreases myelin-associated glycoprotein expression in the spinal cord and positively modulates neuronal growth. Glia. 55, 966-975 (2007).
  11. Josephson, A., et al. Activity-induced and developmental downregulation of the Nogo receptor. Cell and tissue research. 311, 333-342 (2003).
  12. Karlen, A., et al. Nogo receptor 1 regulates formation of lasting memories. Proceedings of the National Academy of Sciences of the United States of America. 106, 20476-20481 (2009).
  13. Kleim, J. A., Lussnig, E., Schwarz, E. R., Comery, T. A., Greenough, W. T. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16, 4529-4535 (1996).
  14. Mironova, Y. A., Giger, R. J. Where no synapses go: gatekeepers of circuit remodeling and synaptic strength. Trends in neurosciences. 14, 7-23 (2013).
  15. Park, H., Poo, M. M. Neurotrophin regulation of neural circuit development and function. Nature reviews. Neuroscience. 14, 7-23 (2013).
  16. Zemmar, A., et al. Neutralization of Nogo-A enhances synaptic plasticity in the rodent motor cortex and improves motor learning in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34, 8685-8698 (2014).
  17. Whishaw, I. Q., Pellis, S. M. The structure of skilled forelimb reaching in the rat: a proximally driven movement with a single distal rotatory component. Behavioural brain research. 41, 49-59 (1990).
  18. Buitrago, M. M., Ringer, T., Schulz, J. B., Dichgans, J., Luft, A. R. Characterization of motor skill and instrumental learning time scales in a skilled reaching task in rat. Behavioural brain research. 155, 249-256 (2004).
  19. Geurts, A. M., et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 325, 433 (2009).
  20. Tews, B., et al. Synthetic microRNA-mediated downregulation of Nogo-A in transgenic rats reveals its role as regulator of synaptic plasticity and cognitive function. Proceedings of the National Academy of Sciences of the United States of America. , (2013).
  21. Li, D., et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature. 31, 681-683 (2013).
check_url/es/53010?article_type=t

Play Video

Citar este artículo
Zemmar, A., Kast, B., Lussi, K., Luft, A. R., Schwab, M. E. Acquisition of a High-precision Skilled Forelimb Reaching Task in Rats. J. Vis. Exp. (100), e53010, doi:10.3791/53010 (2015).

View Video