Summary

三维仿生技术:新型Biorubber创建自定义微观和宏观尺度架构的胶原凝胶

Published: February 12, 2016
doi:

Summary

An innovative biofabrication technique was developed to engineer three-dimensional constructs that resemble the architectural features, components, and mechanical properties of in vivo tissue. This technique features a newly developed sacrificial material, BSA rubber, which transfers detailed spatial features, reproducing the in vivo architectures of a wide variety of tissues.

Abstract

组织支架起到组织再生过程中的关键作用。理想的脚手架必须满足几个条件,如适当有组成,有针对性的模量,以及明确的建筑特色。该概括体内组织的内在结构的生物材料可用于研究疾病,以及便于丢失和畸形软组织的再生是至关重要的。一种新型的生物制造技术的开发,结合​​了先进的成像,三维(3D)打印,和选择性酶活性的国家创造了新一代​​生物材料的研究和临床应用。开发材料,牛血清白蛋白橡胶,是注入一个维护特定几何特征的模具的反应。这种牺牲材料允许建筑特色的充分转移到天然支架材料。所述原型包括一个三维胶原蛋白支架的带4和3mm渠道再版ESENT支架构。本文强调的自然结构的产生使用这种生物制造技术。这个协议利用计算机辅助软件(CAD)来制造固体模具,这将是用BSA橡胶接着橡胶的酶消化注入反应,而使支架材料内的建筑特色。

Introduction

在组织工程领域,制作组织支架的能力是至关重要的。合适的组织支架具有三维结构,是由生物相容的材料制成,并在体内组织架构模拟物,以促进细胞和组织的生长和重建。该支架必须允许营养物质的运输和清除废物1-4。一种在生产这些支架的主要障碍是概括特定几何特征成生物相容的材料的能力。几个生物制造技术已经报道,以控制这些支架的几何特征,实施例是静电5-8,溶剂浇铸9,立体光刻10,和3D印刷11,等等。这些技术达不到在提供相对容易的可控内部和外部的建筑特色转移,是昂贵的,由它们的分辨率和印刷性能(限<em>例如,喷嘴计,材料限制),或需要制造后技术,这需要的时间,以产生可行的支架12长的时间。

在许多商业制造系统,内部空隙,通道和特征的创建是用砂或其他合适的可移动或牺牲材料来实现。的金属或塑料部件围绕砂模形成,并且一旦它被固化时,砂被去除。在大致相同的方式,下一代生物材料的所需要的生物沙等效。因此,波塞橡胶被开发作为用于生物沙的替代物。 BSA的橡胶是由具有戊二醛交联的牛血清白蛋白的一个新制定的材料。最终的目标是具体的建筑特色重建成可生物降解的胶原支架。维持二维保真度与原组织的模具牺牲biorubber的特性进行说明。

<p cl屁股="“jove_content”"> BSA和戊二醛浓度的几种组合进行使用各种溶剂进行测试。该物质经BSA和戊二醛之间的反应产生。 BSA的橡胶可以是注入组织模具的复杂的几何形状的反应。交联的BSA的胰蛋白酶不稳定,并通过在温和的pH和温度条件下的酶容易地消化。相反,完整的I型胶原蛋白是胰蛋白酶消化非常有抗性。这些特征被资本以选择性地移除的BSA橡胶留下胶原后面。目前的工作包括确定获得不稳定的模具,可以到生物相容支架提供特定的建筑特色所需要的理想的参数。进行了评价,该具体特征包括混合性,酶消化,承载,和被注入阴模的反应能力。 30%BSA和3%戊二醛的组合满足这些要求。这个协议提供了necess元指导创建这些三维支架。所述原型包括表示与一个流入和直径分别为4-和3毫米,二流出通道的支链结构的胶原蛋白支架的。该技术具有模仿感兴趣的组织的宏观和微观环境的潜力。这种技术提供了一个可行的技术,以在以高的保真度,其可被调谐以模仿体内组织的弹性和感兴趣的组织的其他特性的相对容易且及时物质递送的特定几何启发可生物降解的材料。

Protocol

1.确定物中的胶原蛋白批次的百分比提取继先前公布的程序13的胶原蛋白。解冻的最低20ml的胶原蛋白。确定以操纵在形成的水凝胶,胶原浓度在批处理胶原固体的初始百分比。 切三块铝箔(约6×6厘米)中,并通过用25毫升烧杯的底部形状每一个作为锅。记录每个锅的重量。 胶原的少量添加到每个平移和记录铝锅和胶原的总重量。添加0.5 – 0.8克胶原每个铝盘。 注?…

Representative Results

的结果表明,该生物制造技术是在产生三维支架,可以模仿体内组织中所看到的空间排列高效。建筑特色是用于组织工程应用的重要参数,打在组织的体内细胞相互作用和功能的关键作用。 BSA的橡胶的一致​​性和混合能力是在生产的BSA橡胶是均匀的,并能保持其预定形状的重要参数。蛋白质的溶解度是通过分?…

Discussion

生物制造是在生物学和工程学原理合并产生模仿自然组织复杂的材料高度多学科领域。为了达到这个目的,有必要开发使用从体内组织收集到的信息,并将其转换成一个在体外的支架技术。以这种方式,平台可改造成非常类似于体内组织的建筑,功能,和机械性能。最佳的支架材料应具有一定的性质,例如是生物相容的,模仿的感兴趣的组织的机械性能,能够受控降解的,能?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH-NIDCR IRO1DE019355 (MJ Yost, PI), and NSF-EPSCoR (EPS-0903795).

Materials

Collagen type I Collagen extracted from calf hide
Hydrocloric Acid (HCl) Sigma-Aldrich 7647-01-0
Phosphate Buffer Solution (PBS Tablets) MP Biomedical U5378 1 tablet per 100 mL makes 1XPBS
Albumium from bovine serum (BSA) Sigma-Aldrich A9647
Glutaraldehyde Sigma -Aldrich G5882 Toxic
Lard Fields 3090
Stainless Steel Molds Milled using Microlution Machine
Air Brush Kit Central Pneumatic 47791
Mixing Tip for double syringe Medmix ML2.5-16-LLM Mixer, DN2,5X16, 4:1 brown, med
Small O ring for double syringe Medmix PPB-X05-04-02SM Piston B, 5mL, 4:1, PE natural
Double Syringe cap  Medmix VLX002-SM Cap, 4:1/10:1, PE brown, med
Big O ring for double syringe Medmix PPA-X05-04-02SM Piston A, 5 mL, 4:1
Double Syringe  Medmix SDL X05-04-50M Double syringe, 5 mL, 4:1
Double Syringe Dispenser Medmix DL05-0400M Dispenser, 5 mL, 4:1, med , plain
Laminim 3.6 mg/mL- extracted USC lab
20 mL Syringe Luer Lock Tip BD 302830
Luer Lock Caps Fisher JGTCBLLX
HEPES Sigma -Aldrich H4034
Gibco Minimum Essential Media 10X (MEM)  Life Technologies 1143-030
Trypsin Life Technologies 27250-018
UV Crosslinker  Spectroline UV XLE1000
Sodium Cloride (NaCl) Fisher S271-10 To prepare Mosconas
Potassium chloride (KCl) Sigma -Aldrich P5405-250 To prepare Mosconas
Sodium Bicarbonate (NaHCO3) Fisher BP328-500 To prepare Mosconas
Glucose Sigma -Aldrich G-8270 To prepare Mosconas
Sodium Phosphate didasic (NaH2PO4) Sigma-Aldrich S-7907 To prepare Mosconas
Sterile Filter for syringes Corning 431224

Referencias

  1. Kundu, J., Pati, F., Hun Jeong, Y., Cho, D. W., Cho, D. W., Forgacs, G. a. b. o. r., Sun, W. e. i. . Biofabrication. , 23-46 (2013).
  2. Vats, A., Tolley, N. S., Polak, J. M., Gough, J. E. Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin. Otolaryngol. 28, 165-172 (2003).
  3. Chan, B. P., Leong, K. W. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 17, s467-s479 (2008).
  4. Salerno, A., Di Maio, E., Iannace, S., Netti, P. A. Tailoring the pore structure of PCL scaffolds for tissue engineering prepared via gas foaming of multi-phase blends. J. Porous Mater. 19, 181-188 (2011).
  5. Hasan, A., et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 10, 11-25 (2014).
  6. Huang, Z. -. M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223-2253 (2003).
  7. Sell, S. A., McClure, M. J., Garg, K., Wolfe, P. S., Bowlin, G. L. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv. Drug. Deliv. Rev. 61, 1007-1019 (2009).
  8. Zheng, W., Zhang, W., Jiang, X. Biomimetic Collagen Nanofibrous Materials for Bone Tissue Engineering. Adv. Eng. Mater. 12, B451-B466 (2010).
  9. Cao, H., Kuboyama, N. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone. 46, 386-395 (2010).
  10. Ankam, S., et al. Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage. Acta Biomater. 9, 4535-4545 (2013).
  11. Bose, S., Vahabzadeh, S., Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater. Today. 16, 496-504 (2013).
  12. Billiet, T., Vandenhaute, M., Schelfhout, J., Van Vlierberghe, S., Dubruel, P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 33, 6020-6041 (2012).
  13. Yost, M. J., et al. A novel tubular scaffold for cardiovascular tissue engineering. Tissue Eng. 10, 273-284 (2004).
  14. Habeeb, A. J., Hiramoto, R. Reaction of proteins with glutaraldehyde. Arch Biochem Biophys. 126, 16-26 (1968).
  15. Tanford, C., Buzzell, J. G. The Viscosity of Aqueous Solutions of Bovine Serum Albumin between pH 4.3 and 10.5. J. Phys. Chem. 60, 225-231 (1956).
  16. Yadav, S., Shire, S. J., Kalonia, D. S. Viscosity analysis of high concentration bovine serum albumin aqueous solutions. Pharm Res. 28, 1973-1983 (2011).
  17. Tobitani, A., Ross-Murphy, S. B. The intrinsic viscosity of polyelectrolytes revisited. Polym. Int. 44, 338-347 (1997).
  18. Arakawa, T., Timasheff, S. N. Theory of protein solubility. Methods Enzymol. 114, 49-77 (1985).
  19. Migneault, I., Dartiguenave, C., Bertrand, M. J., Waldron, K. C. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 37, 790-796 (2004).
  20. Burmeister, J. J., et al. Glutaraldehyde cross-linked glutamate oxidase coated microelectrode arrays: selectivity and resting levels of glutamate in the CNS. ACS Chem Neurosci. 4, 721-728 (2013).
  21. Chatterji, P. R. Gelatin with hydrophilic/hydrophobic grafts and glutaraldehyde crosslinks. J. Appl. Polym. Sci. 37, 2203-2212 (1989).
  22. Freije, J. R., et al. Chemically modified, immobilized trypsin reactor with improved digestion efficiency. J Proteome Res. 4, 1805-1813 (2005).
  23. Cunha-Filho, M. S., Alvarez-Lorenzo, C., Martinez-Pacheco, R., Landin, M. Temperature-sensitive gels for intratumoral delivery of beta-lapachone: effect of cyclodextrins and ethanol. ScientificWorldJournal. 2012, 126723 (2012).
  24. Basak, R., Bandyopadhyay, R. Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. Langmuir. 29, 4350-4356 (2013).

Play Video

Citar este artículo
Rodriguez-Rivera, V., Weidner, J. W., Yost, M. J. Three-dimensional Biomimetic Technology: Novel Biorubber Creates Defined Micro- and Macro-scale Architectures in Collagen Hydrogels. J. Vis. Exp. (108), e53578, doi:10.3791/53578 (2016).

View Video