Summary

对于高伸缩的导线与银纳米线制作方法

Published: January 21, 2016
doi:

Summary

A simple synthesis method is used to chemically solder silver nanowire thin film to fabricate highly stretchable and conductive metal conductors.

Abstract

伸缩性电子装置被认为是一个关键的技术用于电子应用中的下一代。之一,在伸缩性电子器件的制造中的挑战之一是与大的机械稳定性的制剂的伸缩性导体。在这项研究中,我们开发了一个简单的制造方法,化学焊接银纳米线(AgNW)网络之间的接触点。 AgNW纳米网首先沉积在通过喷涂法在玻璃幻灯片。银纳米粒子(AGNPS)的前体组成的无油墨涂了涂AgNW薄膜喷涂。加热40分钟后,分别AGNPS优先于纳米线结到焊接AgNW纳米筛产生,并且加强了导电网络。然后将化学修饰AgNW薄膜转移至聚氨酯(PU)通过流延法的底物。该焊接AgNW薄膜的聚氨酯表现在拉伸或罗林电导率无明显变化克过程与伸长株高达120%。

Introduction

可变形的电子设备具有大的伸缩性已被确定为关键部件的实现可穿戴和便携式电子产品中的下一代。1这些伸缩性电子器件不仅表现出极大的灵活性,因为对塑料片2,3的那些电子设备,但也表现出优异的严重的拉伸或扭转条件下的性能。4要实现的可拉伸电子,材料,下大变形很大的电气性能是必要的。在材料科学的最新进展表明,合成等功能材料的可能性,并用他们来设计伸缩光电器件5-9以极大的宽容,以复杂的形状变形。在所有的电子功能材料,可拉伸的导体是需要供给电力的那些光电器件,从而对设备的性能至关重要。因为常规的导电材料,如金属或铟锡氧化物,缺乏下大变形的机械强度的,由这些材料制成的互连都无法下拉伸处理,以表现出良好的导电性。因此,覆盖有一层薄薄的柔性导电材料,例如碳纳米管,石墨烯1,10或AgNWs弹性基材,11-14被设计为具有优良的拉伸性的导体。因为高体积电导率的,AgNW薄膜已被证明是最有前途的材料为复合伸缩性导体。AgNW薄膜13的渗透网络可以有效地容纳大的弹性变形在拉伸过程中以极大的电导,并且被认为是一个有前途的拉伸电极候选人。为了实现AgNW薄膜作为伸缩性导体,它必须有AgNWs之间的有效的电接触。经过液相沉积的在基板表面ð干燥,AgNWs定期堆叠在一起,以形成渗透啮合松接触点,其产生在大的电阻。因此,人们需要退火通过高温或高压退火方法15-20纳米线之间的接触,以降低接触电阻。

在对比文献中的这些退火工艺,在这里,我们将展示一个简单的化学方法进行退火定期实验室条件AgNW网络连接21的制造过程示于图4A中 。阿反应性墨,用于烧结喷涂AgNW薄膜在玻璃板上。反应后,纳米线之间的接触覆盖有银并且因此AgNW网络被化学焊接在一起。甲铸和剥离方法被用来将焊接AgNW网络传送到一个​​可拉伸的PU基材以形成复合导体,它可以表现出无明显变化我n条电子导电性,即使在120%的大型拉伸应变。

Protocol

1.准备银前体油墨添加1.85克二乙醇胺(DEA)3.15毫升去离子水。 溶解0.15克硝酸银在5毫升去离子水。 混合与DEA的硝酸银水溶液以1:1的体积比具有10个ml的银前体油墨使用之前。 2.制造延伸导电薄膜 AgNW油墨的制备 稀释2毫升的异丙醇0.5%(重量)AgNWs 18毫升去离子水。 将其放置在超声波浴30秒,在25℃。 …

Representative Results

化学焊接过程之后的AgNW薄膜的形态示于图4B。回收AGNPS优先成长AgNWs的表面上,敷在导线/线结。 图5示出了变化的薄层电阻与施加的伸长张力为未焊接和含有不同量AgNWs的焊接的薄膜。化学焊接工艺后,AgNW薄膜导体可以高应变条件下保持高导电性,不管AgNWs的喷洒量。这两种焊接AgNW薄膜显示低于100Ω/□的薄膜电阻,当低于120%的菌株被…

Discussion

化学焊接工艺可以帮助加强银纳米线之间的接触。 如图4b所示,导线/线结被施加反应性银油墨过度涂覆AgNW薄膜喷雾后覆盖有银。的银回收强烈依赖于来自DEA降解所产生的甲醛,并因此在焊接工艺或还原银可以随着温度的增加而加速。22由于AgNWs的金属表面提供有效的电子交换部位,银纳米粒子被优先沿AgNW表面减小,并包裹在钢丝线结,形成混合的接触。这种化学物质的焊接?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

The authors are grateful for the financial support from Ministry of Science and Technology.

Materials

Silver nanowire Sigma-Aldrich 778095-25ML AgNW, 120 nm in diameter and 20-50 mm in length, 0.5 wt% in IPA
Silver nitrate crystal Macron Fine Chemicals MK216903
Diethanolamine Sigma-Aldrich D8885-500G
Polyurethane emulsion First Chemical 20130326036 35 wt% water-based anionic polyester-polyurethane emulsion
Airbrush Taiwan Airbrush & Equipment AFC-sensor 
Desktop robot Dispenser Tech DT-200 
Digital dispenser controller Dispenser Tech 9000E 
Auto-spraying program Dispenser Tech Smart robot edit version 3.0.0.5
Air compressor  PUMA Industrial NCS-10 
Linear motorized stage TANLIAN E-O Customized
Stage control software TANLIAN E-O Customized
Digital multimeter HILA INTERNATIONAL DM-2690TU
Digital multimeter software HILA INTERNATIONAL NA
Power supply CHERN TAIH CT-605
LED PChome M08330766 http://www.pcstore.com.tw/sun-flower/M08330766.htm

Referencias

  1. Rogers, J. A., Someya, T., Huang, Y. Materials and mechanics for stretchable electronics. Science. 327 (5973), 1603-1607 (2010).
  2. Mazzeo, A. D., et al. Paper-based, capacitive touch pads. Adv. Mater. 24 (21), 2850-2856 (2012).
  3. Yang, C., et al. Silver nanowires: from scalable synthesis to recyclable foldable electronics. Adv. Mater. 23 (27), 3052-3056 (2011).
  4. Sekitani, T., Someya, T. Stretchable, Large-area Organic Electronics. Adv. Mater. 22 (20), 2228-2246 (2010).
  5. Lipomi, D. J., Tee, B. C., Vosgueritchian, M., Bao, Z. Stretchable organic solar cells. Adv. Mater. 23 (15), 1771-1775 (2011).
  6. Liang, J., Li, L., Niu, X., Yu, Z., Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photonics. 7 (10), 817-824 (2013).
  7. White, M. S., et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics. 7 (10), 811-816 (2013).
  8. Chang, I., et al. Performance enhancement in bendable fuel cell using highly conductive Ag nanowires. Int. J. Hydrogen Energ. 39 (14), 7422-7427 (2014).
  9. Yan, C. Y., et al. An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure. Adv. Mater. 26 (6), 943-950 (2014).
  10. Lee, M. S., et al. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13 (6), 2814-2821 (2013).
  11. Xu, F., Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24 (37), 5117-5122 (2012).
  12. Yun, S., Niu, X., Yu, Z., Hu, W., Brochu, P., Pei, Q. Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. Adv. Mater. 24 (10), 1321-1327 (2012).
  13. Lee, P., et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24 (25), 3326-3332 (2012).
  14. Akter, T., Kim, W. S. Reversibly Stretchable Transparent Conductive Coatings of Spray-Deposited Silver Nanowires. ACS Appl. Mater. Interfaces. 4 (4), 1855-1859 (2012).
  15. Madaria, A., Kumar, A., Ishikawa, F., Zhou, C. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 3 (8), 564-573 (2010).
  16. Lee, J., et al. Room-Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conducting-Polymer-Assisted Joining for a Flexible Touch-Panel Application. Adv. Funct. Mater. 23 (34), 4171-4176 (2013).
  17. Tokuno, T., et al. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4 (12), 1215-1222 (2011).
  18. Garnett, E. C., et al. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11 (3), 241-249 (2012).
  19. Zhu, S., et al. Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology. 24 (10), 1321-1327 (2013).
  20. Han, S., et al. Fast Plasmonic Laser Nanowelding for a Cu-Nanowire Percolation Network for Flexible Transparent Conductors and Stretchable Electronics. Adv. Mater. 26 (33), 5808-5814 (2014).
  21. Chen, S. P., Liao, Y. C. Highly stretchable and conductive silver nanowire thin films formed by soldering nanomesh junctions. Phys. Chem. Chem. Phys. 16 (37), 19856-19860 (2014).
  22. Chen, S. P., Kao, Z. K., Lin, J. L., Liao, Y. C. Silver conductive features on flexible substrates from a thermally accelerated chain reaction at low sintering temperatures. ACS Appl. Mater. Interfaces. 4 (12), 7064-7068 (2012).

Play Video

Citar este artículo
Chang, C., Chen, S., Liao, Y. A Fabrication Method for Highly Stretchable Conductors with Silver Nanowires. J. Vis. Exp. (107), e53623, doi:10.3791/53623 (2016).

View Video