Summary

母体免疫激活诱导小鼠的病毒性模仿聚妊娠中期阶段(I:C)

Published: March 25, 2016
doi:

Summary

Maternal immune activation (MIA) is a model for an environmental risk factor of autism and schizophrenia. The goal of this article is to provide a step-by-step procedure of how to induce MIA in the pregnant mice in order to enhance the reproducibility of this model.

Abstract

Maternal immune activation (MIA) model is increasingly well appreciated as a rodent model for the environmental risk factor of various psychiatric disorders. Numerous studies have demonstrated that MIA model is able to show face, construct, and predictive validity that are relevant to autism and schizophrenia. To model MIA, investigators often use viral mimic polyinosinic:polycytidylic acid (poly(I:C)) to activate the immune system in pregnant rodents. Generally, the offspring from immune activated dam exhibit behavioral abnormalities and physiological alterations that are associated with autism and schizophrenia. However, poly(I:C) injection with different dosages and at different time points could lead to different outcomes by perturbing brain development at different stages. Here we provide a detailed method of inducing MIA by intraperitoneal (i.p.) injection of 20 mg/kg poly(I:C) at mid-gestational embryonic 12.5 days (E12.5). This method has been shown to induce acute inflammatory response in the maternal-placental-fetal axis, which ultimately results in the brain perturbations and behavioral phenotypes that are associated with autism and schizophrenia.

Introduction

母体免疫激活(MIA)的概念从母体感染患有自闭症和精神分裂症1的关联流行病学研究起源。由于没有在胎盘或母体病毒感染2,3后胎儿大脑检测复制病毒病原体,感染的对后代的影响是假设由母体免疫系统的激活,而不是病原体本身引起的。

为了阐明MIA和精神障碍,注入化学合成,病毒模拟双链RNA聚肌苷之间的原因和结果关系:胞苷酸:成怀孕啮齿类动物(聚(I C))已被广泛地用作动物模型MIA 4,5。聚(I:C)通过toll样受体3(TLR3),和聚的全身给药确认(I:C)诱导病毒样急性炎症反应。一种机制,通过它的聚(I:C)公关oduces行为异常和neuropathologies的后代是由母体胎盘胎儿轴6使亲和抗炎细胞因子的不平衡。一些研究小组已经通过在MIA模型理解精神障碍7的病因,并且由于研究组之间的不同的利益,免疫激活的不同时间点已被用来实现对脑发育和行为7不同扰动。

在保罗·帕特森实验室技术加州理工学院采用注射聚的策略(I:C)为孕鼠胚胎在12.5天(E12.5),它已经成功地证明了MIA能够诱导行为,神经的,并且在与自闭症和精神分裂症相关8-11后代的免疫学变化。我们之前的工作表明,MIA后代显示行为异常( 社会impairmenT,通信逆差,重复的行为,焦虑样行为,以及潜在抑制赤字8,10,12),免疫失调和细胞因子失衡8,13,14,胎儿大脑的基因表达15的改变,在小叶第七浦肯野细胞的损失小脑11,海马突触9性质改变,基因与环境互作13,肠道通透性的改变,以及肠道菌群组成16。此外,治疗和预防策略也从该模型系统13,16,17的发展。通过在E12.5诱导MIA,其他人已经表明MIA产生脑突触分子17的胎儿胶质细胞活化和前脑基底胆碱能18发育改造,株特异性相互作用19,大脑突触脑超微结构异常,脑线粒体呼吸链功能亢进abnormalties,下调,抑郁样行为,认知和海马长时程增强(LTP)障碍,与成人海马神经20的赤字。

在这里,我们提供了如何通过聚诱导MIA在E12.5的详细方法(I:C),以及如何运用这一模型来研究自闭症和精神分裂症的病因学范式。要注意的是MIA为多种病症4的危险因素是很重要的,其结果是对时间和感应的方法,以及在怀孕水坝的饲养极为敏感。这样,实验室之间甚至轻微不一致常常导致低的再现性和/或后代不同的表型。我们的方法是专门为那些有兴趣在学习MIA为自闭症和精神分裂症的环境风险因素设计的,详细的描述中提供将有助于研究人员提高他们的数据的可重复性。

Protocol

所有协议均技术机构动物护理和使用委员会的加州理工学院(IACUC)的批准下进行的。 1.准备定时交配双使用基因表达分析至少6个水坝的行为实验和3。 注意:使用估计雌性小鼠的双数,如只有50%左右的小鼠将从定时交配堵塞。 使用雌性小鼠事先没有怀孕,并在8-16周龄。 注:雌性小鼠有性行为之前接触到雄性小鼠但一直没怀孕是可以接受的。 <li…

Representative Results

的20毫克/公斤的聚注射:在E12.5(I C)可以唤起在母体胎盘胎儿轴急性炎症反应并沉淀到大脑发育和行为表型12,13慢性效果。一个促炎性细胞因子水平升高,白细胞介素(IL)-6,是MIA后急性炎症反应的可靠指标。高峰时间在胎盘IL6的基因表达和胎儿大脑是在3小时后的聚(I:C)注射12,13。我们已经表明,聚(I:C)诱导整个脾脏产妇胎盘,胎儿的…

Discussion

MIA感应在不同的时间窗扰乱在啮齿类动物不同脑发育的事件,并因此导致在后代不同行为异常和neuropathologies。这里,我们描述了一种协议以诱导MIA小鼠与聚(I:C)在E12.5注射。 MIA感应的此方法导致行为,神经病学,免疫学,并与自闭症和精神分裂症的后代8,10,11,16有关的胃肠道异常。要注意,这一点很重要,因为MIA是一个环境风险因素,它们的后代的表型,预计将有比来自神经发育障碍…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

我们要纪念已故保罗·帕特森博士对MIA模型,自闭症和精神分裂症研究的进步作出贡献。我们承认萨尔基斯K. Mazmanian就这一协议的大力支持;鲁本·M.巴戎寺,伊薇特·加西亚 – 弗洛雷斯,卡伦C.伦乔尼,和Leslie A.诺伊曼行政援助;阿里Khoshnan和Jan C.柯对拍摄的援助;伊莱恩Y.萧和Natalia Malkova它们对MIA感应意见;杰弗里·科克伦S.,华金·古铁雷斯,关F·李,海梅·罗德里格斯,洛雷娜C.桑多瓦尔,和Natalie A.贝尔杜斯科及专家畜牧业。这项工作是由美国国立卫生研究院康特中心奖(NIH 5P50MH086383-04,保罗·H·帕特森)的支持;自闭症(#7670,保罗·H·帕特森);西蒙斯基金会(#322839,以萨尔基斯K. Mazmanian);美国国立卫生研究院培训资助(NIH / NRSA T32GM07616到K-HC);加州理工大学暑期大学生研究奖学金(SURF)(以ZY);安进学者计划在加州理工学院(ZY到);和博士后奖学金FROM国家科学委员会,台湾(NSC 101-2917-I-564-039,到W-LW)。

Materials

Polyinosinic–polycytidylic acid potassium salt SIGMA P9582
0.9% sodium chloride INJ. USP HOSPIRA NDC 0409-4888-10
MONOJECT insuline syrinage 3/10 mL 29G x 1/2" COVIDIEN 8881600145
50 ml conical screw cap tubes USA SCIENTIFIC 1500-1211
Nanodrop 1000 spectrophotometer THERMO SCIENTIFIC 1000 Optional
Stereomicroscope Wild Heerbrugg M5A Optional
Dumont #5 Forceps Inox Tip Size .10 X .06mm Roboz RS-5045 Optional
RNAlater RNA stabilization reagent Qiagen 76104 Optional
TRIzol reagent Life Technologies 15596-026  Optional
RQ1 Rnase-free DNase Promega M610A Optional
iScript cDNA synthesis kit Bio-Rad 170-8891 Optional
FastStart universal SYBR green master mix with ROX  Roche 4913922001 Optional
Real-time PCR ABI 7300 Optional
Primer: Il6 forward Life Technologies TAGTCCTTCCTACCCCAATTTCC Optional
Primer: Il6 Reverse Life Technologies TTGGTCCTTAGCCACTCCTTC Optional
Primer: beta-actin forward Life Technologies AGAGGGAAATCGTGCGTGAC Optional
Primer: beta-actin Reverse Life Technologies CAATAGTGATGACCTGGCCGT Optional
MicroAmp optical 96-well reaction plate Life Technologies 4306737 Optionl
MicroAmp optical adhesive film  Life Technologies 4311971 Optionl
EthoVision Noldus EthoVision Optionl
SR-LAB apparatus (PPI) San Diego Instruments  SR-LAB Optionl
Marbles PENN-PLAX Blue gem stones marbles Optionl
Dulbecco's Phosphate-Buffered Saline (DPBS) Life Technologies 21600-069 Optionl
Paraformaldehyde MACRON 2621-59 Optionl
Vibratome Leica VT1000 S Optionl
Sodium azide Sigma S2002 Optionl
Triton x-100 Sigma X100 Optionl
Hydrogen peroxide solution Sigma 18312 Optionl
Goat serum Vector Laboratories S-1000 Optionl
Rabbit anti-calbindin antibody Abcam ab11426 Optionl
Biotinlyated goat anti-rabbit IgGantibody Vector Laboratories BA-1000 Optionl
VECTASTAIN ABC Kit Vector Laboratories PK-4000 Optionl

Referencias

  1. Brown, A. S. Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev Neurobiol. 72 (10), 1272-1276 (2012).
  2. Fatemi, S. H. et al. The viral theory of schizophrenia revisited: abnormal placental gene expression and structural changes with lack of evidence for H1N1 viral presence in placentae of infected mice or brains of exposed offspring. Neuropharmacology. 62 (3), 1290-1298 (2012).
  3. Shi, L., Tu, N., & Patterson, P. H. Maternal influenza infection is likely to alter fetal brain development indirectly: the virus is not detected in the fetus. Int J Dev Neurosci. 23 (2-3), 299-305 (2005).
  4. Knuesel, I. et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol. 10 (11), 643-660 (2014).
  5. Meyer, U. Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry. 75 (4), 307-315 (2014).
  6. Meyer, U., Feldon, J., & Yee, B. K. A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull. 35 (5), 959-972 (2009).
  7. Boksa, P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun. 24 (6), 881-897 (2010).
  8. Hsiao, E. Y., McBride, S. W., Chow, J., Mazmanian, S. K., & Patterson, P. H. Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc Natl Acad Sci U S A. 109 (31), 12776-12781 (2012).
  9. Ito, H. T., Smith, S. E., Hsiao, E., & Patterson, P. H. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring. Brain Behav Immun. 24 (6), 930-941 (2010).
  10. Smith, S. E., Li, J., Garbett, K., Mirnics, K., & Patterson, P. H. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 27 (40), 10695-10702 (2007).
  11. Shi, L. et al. Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav Immun. 23 (1), 116-123 (2009).
  12. Hsiao, E. Y., & Patterson, P. H. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav Immun. 25 (4), 604-615 (2011).
  13. Wu, W. L. et al. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring. Brain Behav Immun. (2015).
  14. Garay, P. A., Hsiao, E. Y., Patterson, P. H., & McAllister, A. K. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav Immun. 31 54-68 (2013).
  15. Garbett, K. A., Hsiao, E. Y., Kalman, S., Patterson, P. H., & Mirnics, K. Effects of maternal immune activation on gene expression patterns in the fetal brain. Transl Psychiatry. 2 e98 (2012).
  16. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 155 (7), 1451-1463 (2013).
  17. Naviaux, R. K. et al. Antipurinergic therapy corrects the autism-like features in the poly(IC) mouse model. PLoS One. 8 (3), e57380 (2013).
  18. Pratt, L., Ni, L., Ponzio, N. M., & Jonakait, G. M. Maternal inflammation promotes fetal microglial activation and increased cholinergic expression in the fetal basal forebrain: role of interleukin-6. Pediatr Res. 74 (4), 393-401 (2013).
  19. Schwartzer, J. J. et al. Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl Psychiatry. 3 e240 (2013).
  20. Khan, D. et al. Long-term effects of maternal immune activation on depression-like behavior in the mouse. Transl Psychiatry. 4 e363 (2014).
  21. Workman, A. D., Charvet, C. J., Clancy, B., Darlington, R. B., & Finlay, B. L. Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci. 33 (17), 7368-7383 (2013).
  22. Abazyan, B. et al. Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry. 68 (12), 1172-1181 (2010).
  23. Meyer, U. et al. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry. 13 (2), 208-221 (2008).
  24. Vuillermot, S. et al. Prenatal immune activation interacts with genetic Nurr1 deficiency in the development of attentional impairments. J Neurosci. 32 (2), 436-451 (2012).
  25. Bechard, A., Nicholson, A., & Mason, G. Litter size predicts adult stereotypic behavior in female laboratory mice. J Am Assoc Lab Anim Sci. 51 (4), 407-411 (2012).
  26. Harvey, L., & Boksa, P. A stereological comparison of GAD67 and reelin expression in the hippocampal stratum oriens of offspring from two mouse models of maternal inflammation during pregnancy. Neuropharmacology. 62 (4), 1767-1776 (2012).
check_url/es/53643?article_type=t

Play Video

Citar este artículo
Chow, K., Yan, Z., Wu, W. Induction of Maternal Immune Activation in Mice at Mid-gestation Stage with Viral Mimic Poly(I:C). J. Vis. Exp. (109), e53643, doi:10.3791/53643 (2016).

View Video