Summary

Retroductal颌下腺灌输和本地化分割照射在涎腺功能减退症大鼠模型

Published: April 24, 2016
doi:

Summary

Salivary gland hypofunction, a major adverse effect of head and neck radiotherapy diminishes a patient’s quality of life. The demonstration of efficacy of new therapies in animal models is a prerequisite before clinical transition. This protocol describes retroductal administration and local irradiation of rat submandibular glands.

Abstract

Normal tissues that lie within the portals of radiation are inadvertently damaged. Salivary glands are often injured during head and neck radiotherapy. Irreparable cell damage results in a chronic loss of salivary function that impairs basic oral activities, and increases the risk of oral infections and dental caries. Salivary hypofunction and its complications gravely impact a patient’s comfort. Current symptomatic management of the condition is ineffective, and newer therapies to assuage the condition are needed.

Salivary glands are exocrine glands, which expel their secretions into the mouth via excretory ducts. Cannulation of these ducts provides direct access to the glands. Retroductal delivery of a contrast agent to major salivary glands is a routine out-patient procedure for diagnostic imaging. Using a similar procedure, localized treatment of the glands is feasible. However, performing this technique in preclinical studies with small animals poses unique challenges. In this study we describe the technique of retroductal administration in rat submandibular glands, a procedure that was refined in Dr. Bruce Baum’s laboratory (NIH)1, and lay out a procedure for local gland irradiation.

Introduction

健康组织的侧支破坏占了许多癌症治疗的有害副作用。与该辐射场位于大唾液腺的一部分或全部都不可避免地破坏。因此,经历骨髓移植前头部和颈部癌,子宫颈癌淋巴瘤,或全身辐射放疗大多数患者遭受的辐射,唾液腺机能减退2-6的最常见和最 ​​持久的不利效果之一。

唾液腺的流体产生腺泡细胞对辐射十分敏感。损坏唾液腺导致唾液流,称为唾液腺机能减退的条件的急剧减少。在唾液流量慢性减少损害的关键口腔活动,如咀嚼,吞咽,语言和口味,但剧烈的疼痛,黏膜撕裂,吞咽困难,机会性感染病态的后遗症,和龋齿恶化一个病人的福祉和功能2,3。

由于放疗相关的唾液腺细胞的损失是不可逆的,有口干没有矫正治疗。专注于人工唾液替代品和药品prosecretory平息目前的症状治疗无效的长期救援6。虽然改进的辐射递送技术已经帮助减少的病症的严重程度,正常组织的毒性及其并发症留在癌症治疗中6,7-一个限制因素。先发制人的措施,以防止放射治疗相关的并发症,因此,成为常态。正在探索的清除自由基的氧,促进细胞再增殖,或增强DNA修复放射保护剂,以避免唾液功能减退8-11。

外分泌腺唾液腺分泌物流入通过主排泄管道口。个的口腔内插管E对于造影剂注射排泄管道作为门诊手术常规做。利用类似的方法,唾液腺可以直接针对局部治疗12。除了降低的全身性副作用的风险,retroductal腺滴注增加的好处。围绕导管树唾液腺细胞的单层布置允许指定所有唾液腺上皮细胞,以及腺充当屏障纤维封装,以减少不必要的治疗性传播。从本质上讲,唾液腺是最适宜于腺体的苦难,如放射性唾液腺功能减退的有针对性的治疗。

( – 2.5格雷/分/天,每周五天1.8),为期两周的用于癌症治疗常规辐射中的小剂量输送。因此,无线电防护治疗,显示在实验模型对旷日持久的辐射方案的疗效有较大的临床影响。康博分次辐射后mised唾液腺功能已被记录在小动物,但辐射源,剂量分数,和使用的协议是多种多样9,10,13。

该报告建立了retroductal交付使用病人相关的辐射源和剂量率大鼠颌下腺局部放射方法。

Protocol

所有的程序是由路易斯安那州立大学健康,什里夫波特,动物护理和使用委员会批准,并分别按照照顾和使用实验动物的指导方针NIH。 1.鼠颌下腺涎腺插管 注射器管组件的研制 切PE10聚乙烯管的一个10cm的长度用手术刀。容纳食指和拇指之间的管道的两端。加热上述平缓火焰管的中间部分,并轻轻拉伸软化的管道通过拉双方加倍其长度。 在切?…

Representative Results

适应微创技术造影,大唾液腺的局部治疗是可行的。在大鼠颌下腺唾液腺Retroductal给药试图通过沃顿管道口腔内插管( 图2)。沃顿的唾液腺导管上位于口底的舌下乳头打开,但这些孔不容易看到。插管的插入物,因此,通过温和探测完成。为了避免不良出血或穿孔管,同时将套管没有使用武力。在导管插管的光滑无电阻的通道是由管子的平缓来回运动证实。 …

Discussion

唾液腺经常接受的辐射剂量超出经历了头颈部肿瘤,颈淋巴结选修消融或地区血液系统恶性肿瘤放疗的病人组织恢复的门槛。尽管腺的流体分泌腺泡细胞终末分化,它们是矛盾的对辐射敏感。分泌功能辐射和不可逆转的破坏腺体结果的第一周内滴在慢性低口水输出。为了打击穷人腺体功能和随之而来的口腔干燥,保存或分泌功能的恢复是至关重要的。新的治疗方法,以防止或修复辐射的伤害正在?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

We thank Dr. John Chang (Radiation Oncology, LSU Health Science Center) for assistance with radiation dose measurements. The study was supported by the American Cancer Society (Grant number: 116945-RSG-09-038-01-CCE), National Institute of Health (Grant number: R21CA173162) and the Feist-Weiller Cancer Center.

Materials

Intramedic Polyethylene tubing (PE10) Becton Dickson 427401
1/2 cc Insulin Syringe U-100 Becton Dickson 309306
Artificial Tears Miller Vet Supply  5098-9840-64
Hot Bead Sterilizer Fine Science Tools 18000-45
Perma-Hand silk suture Ethicon K833H
Graefe forcep Fine Science Tools 11051-10
Olympus SZX16 Stereo Microscope Hunt Optics and Imaging
6MV Linear Accelerator Elekta
Bolus – Skinless  Civco MTCB410
Heat Lamp Braintree Scientific HL-1 110V

Referencias

  1. Delporte, C., et al. Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc Natl Acad Sci U S A. 94 (7), 3268-3273 (1997).
  2. Chambers, M. S., Rosenthal, D. I., Weber, R. S. Radiation-induced xerostomia. Head Neck. 29 (1), 58-63 (2007).
  3. Sciubba, J. J., Goldenberg, D. Oral complications of radiotherapy. Lancet Oncol. 7 (2), 175-183 (2006).
  4. Rodrigues, N. A., et al. A prospective study of salivary gland function in lymphoma patients receiving head and neck irradiation. Int J Radiat Oncol Biol Phys. 75 (4), 1079-1083 (2009).
  5. Coracin, F. L., et al. Major salivary gland damage in allogeneic hematopoietic progenitor cell transplantation assessed by scintigraphic methods. Bone Marrow Transplant. 37 (10), 955-959 (2006).
  6. Jensen, S. B., et al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: management strategies and economic impact. Support Care Cancer. 18 (8), 1061-1079 (2010).
  7. de Castro, G., Federico, M. H. Evaluation, prevention and management of radiotherapy-induced xerostomia in head and neck cancer patients. Curr Opin Oncol. 18 (3), 266-270 (2006).
  8. Epperly, M. W., Carpenter, M., Agarwal, A., Mitra, P., Nie, S., Greenberger, J. S. Intraoral manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) radioprotective gene therapy decreases ionizing irradiation-induced murine mucosal cell cycling and apoptosis. In Vivo. 18 (4), 401-410 (2004).
  9. Cotrim, A. P., Sowers, A., Mitchell, J. B., Baum, B. J. Prevention of irradiation-induced salivary hypofunction by microvessel protection in mouse salivary glands. Mol Ther. 15 (12), 2101-2106 (2007).
  10. Zheng, C., et al. Prevention of radiation-induced salivary hypofunction following hKGF gene delivery to murine submandibular glands. Clin Cancer Res. 17 (9), 2842-2851 (2011).
  11. Palaniyandi, S., et al. Adenoviral delivery of Tousled kinase for the protection salivary glands against ionizing radiation damage. Gene Ther. 18 (3), 275-282 (2011).
  12. Baum, B. J., Voutetakis, A., Wang, J. Salivary glands: novel target sites for gene therapeutics. Trends Mol Med. 10 (12), 585-590 (2004).
  13. Limesand, K. H., et al. Insulin-like growth factor-1 preserves salivary gland function after fractionated radiation. Int J Radiat Oncol Biol Phys. 78 (2), 579-586 (2010).
  14. Timiri Shanmugam, P. S., et al. Recombinant AAV9-TLK1B administration ameliorates fractionated radiation-induced xerostomia. Hum Gene Ther. 24 (6), 604-612 (2013).
  15. Coppes, R. P., Vissink, A., Konings, A. W. T. Comparison of radiosensitivity of rat parotid and submandibular glands after different radiation schedules. Radiother Oncol. 63 (3), 321-328 (2002).
  16. Sunavala-Dossabhoy, G., Palaniyandi, S., Richardson, C., De Benedetti, A., Schrott, L., Caldito, G. TAT-mediated delivery of Tousled protein to salivary glands protects against radiation-induced hypofunction. Int J Radiat Oncol Biol Phys. 84 (1), 257-265 (2012).
  17. Baum, B. J., et al. Transfer of the AQP1 cDNA for the correction of radiation-induced salivary hypofunction. Biochim Biophys Acta. 1758 (8), 1071-1077 (2006).
  18. Tran, S. D., et al. Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation. PLoS One. 8 (4), e61632 (2013).
  19. Nanduri, L. S., et al. Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland. Radiother Oncol. 108 (3), 458-463 (2013).
  20. Arany, S., Benoit, D. S., Dewhurst, S., Ovitt, C. E. Nanoparticle-mediated gene silencing confers radioprotection to salivary glands in vivo. Mol Ther. 21 (6), 1182-1194 (2013).
  21. Voutetakis, A., et al. Reengineered salivary glands are stable endogenous bioreactors for systemic gene therapeutics. Proc Natl Acad Sci U S A. 101 (9), 3053-3058 (2004).
check_url/es/53785?article_type=t

Play Video

Citar este artículo
Nair, R. P., Zheng, C., Sunavala-Dossabhoy, G. Retroductal Submandibular Gland Instillation and Localized Fractionated Irradiation in a Rat Model of Salivary Hypofunction. J. Vis. Exp. (110), e53785, doi:10.3791/53785 (2016).

View Video