Summary

IL-1βプロモーター駆動のDsRedレポーターマウスを用いた好中球プライミングの生体内イメージング

Published: June 22, 2016
doi:

Summary

This current protocol employs fluorescent reporters, in vivo labeling, and intravital imaging techniques to enable monitoring of the dynamic process of neutrophil priming in living animals.

Abstract

好中球は人間の血液循環中で最も豊富な白血球であるとすぐに炎症部位に補充されます。プライミングは、好中球の貪食機能を強化し、重要なイベントです。広範な研究は、感染や傷害の間に好中球のプライミングの存在と重要性を発表しているが、 生体内でこのプロセスを可視化する手段が使用できなくなっています。蛍光結合抗リンパ球抗原の注入によって達成- 2)in vivoでの好中球の標識をプライミングの尺度として使用- 1)のDsRedレポーターシグナル:提供されたプロトコールは、3の方法論を組み合わせることにより、生きている動物にプライミング好中球のダイナミックなプロセスの監視が可能6G(Ly6G)モノクローナル抗体(mAb)、3)生体内共焦点画像化。いくつかの重要なステップは、このプロトコルに関与している:オキサゾロン誘発性マウス耳皮膚の炎症、動物の適切な鎮静、抗Ly6G mAbの反復注射、および前へ撮影時の焦点ドリフトのention。いくつかの制限は、1つのマウスでの連続撮影時間(〜8時間)の限界とフルオレセインイソチオシアネート – デキストラン炎症状態の血管からの漏出として、観察されているが、このプロトコルは、生体内イメージングのための基本的なフレームワークを提供します簡単にマウス炎症モデルにおける他の免疫細胞の検査に拡大することができる下塗りされた好中球の挙動と機能、。

Introduction

好中球は、循環中で最も豊富で短命白血球です。彼らは急速に彼らは抗菌ペプチドおよびプロテアーゼ1を含有する顆粒と一緒に活性酸素の放出および窒素中間体を介してプロの食細胞として機能し、感染または損傷の部位に動員されます。彼らの募集時には、好中球は炎症2の部位での到着時に顕著に強化された食細胞の機能で、その結果、微生物製品、化学誘引物質、および炎症性サイトカインを含む種々の薬剤によって「プライミングされた"されています。好中球のプライミングのメカニズムが広く試験管 3,4 研究されています。しかしながら、 インビボでのプロセスの動的監視は、これまで不可能でした。

近年、生体内イメージングは​​、生体内の生物学的プロセスの細胞動態を可視化し、定量化するための重要な技術となっています。 Intraviタル画像は、従来の一光子励起顕微鏡( 例えば、共焦点)を介して行うことができ、または多顕微鏡5に近づきます。時間が経つにつれて、かなりの改善が増加画像解像度、改善されたイメージング深さを可能にするこの技術で達成された、組織の光損傷、および強化された防振6,7を減少ました 。時間をかけて細胞移動および相互作用の動的可視化を可能にする独自の能力を考えると、生体顕微鏡は広く免疫学8に研究の多様な分野に適用されています。生体内イメージングは​​、よりよい生きている動物モデルの両方の細胞および分子レベルでの免疫応答を理解し、文脈する免疫学者を可能にします。

最近のトランスジェニックの進歩だけでなく、ノックインレポーターマウスは、生​​きている動物に好中球の動的挙動を監視するための有用なツールを提供してきました。リゾチームMプロモーター駆動強化緑色蛍光タンパク質ノックインマウスは広く溢出、細菌感染、および無菌性炎症9-15を含む種々の炎症性プロセスの間、好中球、単球、およびマクロファージの運動性を特徴づけるために使用されています。さらに、細胞質の蛍光共鳴エネルギー転移のバイオセンサーを発現するトランスジェニックマウスは、炎症性腸16内の好中球細胞外調節さマイトジェンキナーゼおよびプロテインキナーゼAの ​​活性を研究に使用されています。好中球における蛍光発現のための高い特異性を有するマウスモデルは、それ自体がリンパ球抗原6G(Ly6G)17の発現に結合された蛍光タンパク質tdTomato、ならびにCreリコンビナーゼを生成キャッチアップノックインマウス、です。このモデルを介したLy6G欠損好中球の可視化は、これらの細胞が生体内の炎症コンテキストの滅菌または感染の様々な通常の機能を発揮することが実証されています。 DsRedの蛍光​​Pを発現するトランスジェニックマウス好中球、炎症性単球、および活性化マクロファージを含むと考え – – (IL-1β)プロモーター(pIL1-DsRedの)はIL-1β産生細胞の運動性挙動を可視化するために利用されているinterleuikin-1βマウスの制御下に遺伝子をrotein新興炎症を起こした皮膚の18インチ

in vivoでの標識は、炎症を起こした組織中の好中球の細胞および分子の挙動を追跡するための代替的なアプローチとして機能することができます。蛍光標識した抗GR-1モノクローナル抗体(mAb)の低用量の静脈内注射した後、GR-1 +好中球の動員カスケードは、 黄色ブドウ球菌 19を感染させたマウスの皮膚病変で可視化されてきた。ストレプトアビジンを含む結合体のインビボ投与コンジュゲートさ705 nmの量子ドットおよびビオチン化抗Ly6G mAbが特異的に循環好中球20にラベル付けます。 neutrophへのそのようなコンジュゲートのまた、エンドサイトーシスIL小胞間質への移行の好中球で高速小胞輸送の追跡を可能にする。P-セレクチン糖タンパク質リガンド-1(PSGL-1)、L-セレクチン(CD62L)に対する蛍光標識抗体とのin vivo標識、インテグリンαM(CD11bのTNFα誘導性炎症モデルにおける)およびケモカイン(CXCモチーフ)受容体2(CXCR2)は、初期の炎症の21時に遊んで調節機構を解明しました。偏好中球は、CD11bおよびCXCR2の再分配が生じ、活性化血小板上のCD62Lの存在と対話するためのPSGL-1に富んだuropods、好中球遊走を駆動し、炎症を開始する受容体を突出しています。

IL-1βは、下塗りされた好中球22に上昇しているシグネチャー遺伝子の一つです。 pIL1-DsRedのレポーターマウスにおいて、DsRedの蛍光シグナル( すなわち 、IL-1βプロモーターの活性化)正にIL-1βmRNAの発現及びIL-1βタンパク質産生と相関します。<SUP> 18は、好中球のプライミングのプロセスを監視するには、生体顕微鏡法は、蛍光結合抗Ly6G mAbによる好中球のin vivo標識次pIL1-DsRedのマウスモデルにおけるオキサゾロン(OX)で皮膚の炎症の誘導を伴う開発されました。このモデルを介して、様々な疾患および障害の動物モデルにおいて好中球プライミングの動作及び機能を研究することが可能です。

Protocol

全ての動物実験は、国立衛生研究所のガイドラインに従って実行し、トレドの大学の施設内動物管理使用委員会によって承認されています。 pIL1-DsRedをマウスの1表現型注:子孫は、野生型(WT)C57BL6マウスとヘテロ接合pIL1-DsRedのマウスを交配することによって生成されます。 3〜4週齢の仔は、表現型の準備と考えられています。マウスの顎下出血は、…

Representative Results

pIL1-DsRedのマウスのスクリーニングを、フローサイトメトリーを使用して、末梢血白血球によって産生される表現型のDsRed蛍光シグナルに基づいて行われます。 LPS刺激は、好中球、単球、および樹状細胞を26〜28を含む骨髄細胞におけるIL-1βの産生を誘導することが知られています。したがって、単離された白血球は、フローサイトメトリー分析の前に4時間、L…

Discussion

本研究の目的は、まだ現在利用可能な技術によって満たされていない生きている動物における好中球のプライミングのプロセスを監視するための技術を開発することです。この目標を達成するために、3つの確立された方法が実行される:IL-1βプロモーター駆動のDsRedレポーターマウスの皮膚炎症の1)誘導プライミングの尺度として、蛍光結合抗Ly6Gの低用量での好中球の2)in vivo標識モ…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

Heparin sodium APP Pharmaceuticals NDC 63323-540-31
ACK lysing buffer Lonza 10-548E
Fetal bovine serum Sigma-Aldrich F0926
Lipopolysaccharides Sigma-Aldrich L4391
Ketamine hydrochloride Hospira NDC 0409-2051-05
Xylazine LLOYD Laboratory NADA #139-236
Acepromazine Boehringer Ingelheim ANADA 200-361
Hair-removal cream Church & Dwight
Acetone Fisher Scientific A16P4
Oxazolone Sigma-Aldrich E0753
Alexa Fluor 647 anti-mouse Ly6G antibody BioLegend 127610
U-100 insulin syringe with 28 G needle BD 329461
FITC-CM-Dextran, 150 Kda Sigma-Aldrich 74817
Butterfly infusion set (27 G needle) BD 387312
FACSCalibur cytometer BD
CellQuest Pro software BD
Confocal microscope Olympus FV1000
Metamorph Software Universal Imaging

Referencias

  1. Nauseef, W. M., Borregaard, N. Neutrophils at work. Nat. Immunol. 15 (7), 602-611 (2014).
  2. Kobayashi, S. D., Voyich, J. M., Burlak, C., DeLeo, F. R. Neutrophils in the innate immune response. Arch. Immunol. Ther. Exp. (Warsz). 53 (6), 505-517 (2005).
  3. Condliffe, A. M., Kitchen, E., Chilvers, E. R. Neutrophil priming: pathophysiological consequences and underlying mechanisms. Clin. Sci. (Lond). 94 (5), 461-471 (1998).
  4. El-Benna, J., Dang, P. M., Gougerot-Pocidalo, M. A. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin. Immunopathol. 30 (3), 279-289 (2008).
  5. Benson, R. A., McInnes, I. B., Brewer, J. M., Garside, P. Cellular imaging in rheumatic diseases. Nat. Rev. Rheumatol. 11 (6), 357-367 (2015).
  6. Herz, J., Zinselmeyer, B. H., McGavern, D. B. Two-photon imaging of microbial immunity in living tissues. Microsc. Microanal. 18 (4), 730-741 (2012).
  7. Tang, J., van Panhuys, N., Kastenmuller, W., Germain, R. N. The future of immunoimaging–deeper, bigger, more precise, and definitively more colorful. Eur. J. Immunol. 43 (6), 1407-1412 (2013).
  8. Weigert, R., Porat-Shliom, N., Amornphimoltham, P. Imaging cell biology in live animals: ready for prime time. J. Cell. Biol. 201 (7), 969-979 (2013).
  9. Ng, L. G., et al. Visualizing the neutrophil response to sterile tissue injury in mouse dermis reveals a three-phase cascade of events. J. Invest. Dermatol. 131 (10), 2058-2068 (2011).
  10. Kreisel, D., et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc. Natl. Acad. Sci. USA. 107 (42), 18073-18078 (2010).
  11. Finsterbusch, M., Voisin, M. B., Beyrau, M., Williams, T. J., Nourshargh, S. Neutrophils recruited by chemoattractants in vivo induce microvascular plasma protein leakage through secretion of TNF. J. Exp. Med. 211 (7), 1307-1314 (2014).
  12. Lin, A., Loughman, J. A., Zinselmeyer, B. H., Miller, M. J., Caparon, M. G. Streptolysin S inhibits neutrophil recruitment during the early stages of Streptococcus pyogenes infection. Infect. Immun. 77 (11), 5190-5201 (2009).
  13. Howe, C. L., Lafrance-Corey, R. G., Sundsbak, R. S., Lafrance, S. J. Inflammatory monocytes damage the hippocampus during acute picornavirus infection of the brain. J. Neuroinflammation. 9 (50), (2012).
  14. Chen, X., et al. In vivo multi-modal imaging of experimental autoimmune uveoretinitis in transgenic reporter mice reveals the dynamic nature of inflammatory changes during disease progression. J. Neuroinflammation. 12 (17), (2015).
  15. Slaba, I., et al. Imaging the Dynamic Platelet-Neutrophil Response in Sterile Liver Injury and Repair in Mice. Hepatology. , (2015).
  16. Mizuno, R., et al. In vivo imaging reveals PKA regulation of ERK activity during neutrophil recruitment to inflamed intestines. J. Exp. Med. 211 (6), 1123-1136 (2014).
  17. Hasenberg, A., et al. Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes. Nat. Methods. 12 (5), 445-452 (2015).
  18. Matsushima, H., et al. Intravital imaging of IL-1beta production in skin. J. Invest. Dermatol. 130 (6), 1571-1580 (2010).
  19. Yipp, B. G., Kubes, P. Antibodies against neutrophil LY6G do not inhibit leukocyte recruitment in mice in vivo. Blood. 121 (1), 241-242 (2013).
  20. Kikushima, K., Kita, S., Higuchi, H. A non-invasive imaging for the in vivo tracking of high-speed vesicle transport in mouse neutrophils. Sci. Rep. 3, (1913).
  21. Sreeramkumar, V., et al. Neutrophils scan for activated platelets to initiate inflammation. Science. 346 (6214), 1234-1238 (2014).
  22. Yao, Y., et al. Neutrophil priming occurs in a sequential manner and can be visualized in living animals by monitoring IL-1beta promoter activation. J. Immunol. 194 (3), 1211-1224 (2015).
  23. Golde, W. T., Gollobin, P., Rodriguez, L. L. A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Anim. (NY). 34 (9), 39-43 (2005).
  24. Yardeni, T., Eckhaus, M., Morris, H. D., Huizing, M., Hoogstraten-Miller, S. Retro-orbital injections in mice). Lab. Anim. (NY). 40 (5), 155-160 (2011).
  25. Fotos, J. S., et al. Automated time-lapse microscopy and high-resolution tracking of cell migration). Cytotechnology. 51 (1), 7-19 (2006).
  26. Mizumoto, N., et al. Discovery of novel immunostimulants by dendritic-cell-based functional screening. Blood. 106 (9), 3082-3089 (2005).
  27. Cassatella, M. A. Neutrophil-derived proteins: selling cytokines by the pound. Adv. Immunol. 73, 369-509 (1999).
  28. Grahames, C. B., Michel, A. D., Chessell, I. P., Humphrey, P. P. Pharmacological characterization of ATP- and LPS-induced IL-1beta release in human monocytes. Br. J. Pharmacol. 127 (8), 1915-1921 (1999).
  29. Levin, M., Leibrecht, H., Ryan, J., Van Dolah, F., De Guise, S. Immunomodulatory effects of domoic acid differ between in vivo and in vitro exposure in mice. Mar. Drugs. 6 (4), 636-659 (2008).
  30. Basu, S., Hodgson, G., Katz, M., Dunn, A. R. Evaluation of role of G-CSF in the production, survival, and release of neutrophils from bone marrow into circulation. Blood. 100 (3), 854-861 (2002).
  31. Kreft, M., Stenovec, M., Zorec, R. Focus-drift correction in time-lapse confocal imaging. Ann. N. Y. Acad. Sci. 1048, 321-330 (2005).
  32. Zucker, R. M. Quality assessment of confocal microscopy slide-based systems: instability. Cytometry A. 69 (7), 677-690 (2006).
  33. Hogan, H. Focusing on the experiment. Biophotonics. Int. 13, 48-51 (2006).
  34. Kabashima, K., Egawa, G. Intravital multiphoton imaging of cutaneous immune responses. J. Invest. Dermatol. 134 (11), 2680-2684 (2014).
  35. Egawa, G., Natsuaki, Y., Miyachi, Y., Kabashima, K. Three-dimensional imaging of epidermal keratinocytes and dermal vasculatures using two-photon microscopy. J. Dermatol. Sci. 70 (2), 143-145 (2013).
  36. Kedrin, D., et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods. 5 (12), 1019-1021 (2008).
  37. Mostany, R., Portera-Cailliau, C. A method for 2-photon imaging of blood flow in the neocortex through a cranial window. J. Vis. Exp. (12), (2008).
  38. Ritsma, L., et al. Surgical implantation of an abdominal imaging window for intravital microscopy. Nat. Protoc. 8 (3), 583-594 (2013).
  39. Looney, M. R., et al. Stabilized imaging of immune surveillance in the mouse lung. Nat. Methods. 8 (1), 91-96 (2011).

Play Video

Citar este artículo
Yao, Y., Liu, Y., Takashima, A. Intravital Imaging of Neutrophil Priming Using IL-1β Promoter-driven DsRed Reporter Mice. J. Vis. Exp. (112), e54070, doi:10.3791/54070 (2016).

View Video