Summary

重复震荡颅脑损伤模型小鼠

Published: October 12, 2016
doi:

Summary

Concussion presents the most common type of traumatic brain injury. Therefore, a repetitive concussive animal model, which replicates the important features of an injury in patients, may provide a means to study concussion in a rigorous, controlled, and efficient manner.

Abstract

Despite the concussion/ mild traumatic brain injury (mTBI) being the most frequent occurrence of traumatic brain injury, there is still a lack of knowledge on the injury and its effects. To develop a better understanding of concussions, animals are often used because they provide a controlled, rigorous, and efficient model. Studies have adapted traditional animal models to perform mTBI to stimulate mild injury severity by changing the injury parameters. These models have been used because they can produce morphologically similar brain injuries to the clinical condition and provide a spectrum of injury severities. However, they are limited in their ability to present the identical features of injuries in patients. Using a traditional impact system, a repetitive concussive injury (rCHI) model can induce mild to moderate human-like concussion. The injury degree can be determined by measuring the period of loss of consciousness (LOC) with a sign of a transient termination of breathing. The rCHI model is beneficial to use for its accuracy and simplicity in determining mTBI effects and potential treatments.

Introduction

脑震荡,也被称为轻度颅脑损伤(MTBI),是创伤性脑损伤(TBI)的最频繁发生,影响数百万人在美国。震荡可能会非常棘手的诊断并没有为脑震荡没有具体的治疗。有越来越多的认可和一些证据表明,运动损伤,军事打击,以及其他物理引人入胜的追求导致轻微的机械性损伤可能有累积性,慢性神经后果1,2。然而,仍然有关于脑震荡及其影响的认识不足。现行方法限制病理和治疗的人类研究的,因为只有神经评估和成像评估可用于临床诊断。动物模型提供了学习的脑震荡与进一步的诊断和治疗MTBI的希望高效,严谨,可控的方式的一种手段。

有研究适应传统的TBI车型如控制皮质影响(CCI),液压冲击影响(FPI),体重下降损伤,爆炸伤执行MTBI通过改变参数的伤害低刺激伤害的严重性。这些模型,由于其复制脑外伤形态上类似于临床状况的能力是有益的使用;不过,他们也有自己的局限性。由加速度损伤(重量滴)诱导损伤的严重程度常常是高度可变的。轻度CCI的两种结果 – 蛛网膜下腔出血和挫伤焦点 – 不典型的脑震荡的人可比的。 CCI和FPI需要开颅手术,这不是临床相关,而爆伤是曝光3-6期间关于不同的曝光位置和峰值压力测量一个比较有争议的模型,以及可变继发性损伤一个更新的震荡动物模型可以转化临床前研究的临床settiNG是必要的研究。

在模拟轻度TBI的关键问题是确定实验损伤严重,其中最密切复制在临床受伤。最近,不同的研究小组开发出闭合性颅脑损伤或震荡头部损伤(CHI)模型7-10。 CHI是CCI的不开颅的修改,但它依然采用的是传统的电子磁场影响系统产生头部撞击。阴气可以通过调节参数的影响引起了脑震荡,从轻度到中度。意识(LOC)的损失可立即通过检测呼吸速率或呼吸的瞬时终止的降低的冲击之后观察到。 LOC的期间被用于确定损伤的严重程度。本文包括小鼠重复CHI(rCHI)模型略有改善和更新版本,以及一个详细的一步一步的协议和代表的搜索结果。该rCHI模型研究战略重新确定MTBI效应和潜在的治疗有益的,特别是因为有能够模仿所有的脑震荡引起的病理变化没有个体动物模型。

Protocol

根据协议#201207692由佛罗里达大学的机构动物护理和使用委员会,并按照卫生指南实验动物的护理和使用国家认可的机构进行所有的程序。 1.动物护理使用3-4个月大的雄性C57BL / 6J小鼠。提供床上用品,排料,食品, 自由采食和饮水 。保持小鼠控制在20环境温度 – 22℃,恒定的12小时光照/ 12小时黑暗的周期。 2.预嵌塞准备<li…

Representative Results

在这个模型中( 图1 AC),有喘息和呼吸浅的短暂。意识(无意识)的损耗被定义为呼吸率或恢复正常的呼吸呼吸之前短暂终止下降。在头部的中心的冲击造成的短期无意识(7.5±4.7,7.8±5.5,10.2±8.8,在每个冲击9.5±8.0秒分开, 图1D)。小鼠的大脑表现出通过H&E染色的组织学,这表明来自冲击( 图2A)产生没有明显的结构损害或组织…

Discussion

模仿脑损伤形态相似的临床病症,预期脑震荡后症状。脑震荡的症状后一般包括头痛,头晕,眼花,乏力,记忆力和睡眠障碍,注意力无法集中以及焦虑,情绪低落。由于躯体症状可能还不是在动物模型衡量,运动和认知功能和情感行为的变化作为标准,在动物模型中合理评估脑震荡。在先前的报道的研究中,它表明,在rCHI小鼠模型诱导缺陷在空间学习,记忆和焦虑8。更重要的是,在此…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This works was supported by funding from a Florida Health grant (Brain and spinal cord injury research fund) (KKW).

Materials

anesthesia machine Eagle Eye Anesthesia, Inc Model 150  anesthesia
Electromagnetic Impactor LeicaBiosystems Impact One Stereotaxic Impactor perform impaction
Digital Stereotaxic instrument LeicaBiosystems 39462501 mount mouse and positioning tips
Sicilone rubber-coated metal tip Precision Tool & Engineering, Gainesvill FL custom-made impact tip
Lithium Ion All-in-One Trimmer WAHL Home Products 9854-600 shave mouse hair
paper clips custom-made probe tip
Cotton tipped applicators MEDLINE MDS202055 scrub head with saline
Tissue Tek O.C.T. ASKURA FINETEK USA INC 4583 tissue embedding
anti-GFAP Dako CA93013 antibody for IHC
anti Ferritin Sigma F6136 antibody for IHC
VECTASTAIN Elite ABC  kit Vector laboratories PK-6100 IHC detection system
Permount Mounting Medium Fisher Scientific SP15-100
Aperio XT ScanScope scanner Leica Microsystems Inc, slides scanning
Leica AutoStainer XL Leica the pathology Company ST2010 H&E staining
DAB  sigma D3939 IHC detection system

Referencias

  1. Baugh, C. M., et al. Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging Behav. 6 (2), 244-254 (2012).
  2. McKee, A. C., et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J. Neuropathol Exp Neurol. 68 (7), 709-735 (2009).
  3. Petraglia, A. L., Dashnaw, M. L., Turner, R. C., Bailes, J. E. Models of mild traumatic brain injury: translation of physiological and anatomic injury. Neurosurgery. 75 Suppl (4), S34-S49 (2014).
  4. Goldstein, L. E., McKee, A. C., Stanton, P. K. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy. Alzheimers Res Ther. 6 (5), 64 (2014).
  5. Gold, E. M., et al. Functional assessment of long-term deficits in rodent models of traumatic brain injury. RegenMed. 8 (4), 483-516 (2013).
  6. Xiong, Y., Mahmood, A., Chopp, M. Animal models of traumatic brain injury. Nat Rev Neurosci. 14 (2), 128-142 (2013).
  7. Luo, J., et al. Long-term cognitive impairments and pathological alterations in a mouse model of repetitive mild traumatic brain injury. Front Neurol. , 5-12 (2014).
  8. Yang, Z., et al. Temporal MRI characterization, neurobiochemical and neurobehavioral changes in a mouse repetitive concussive head injury model. Sci Rep. 10 (5), 11178 (2015).
  9. Zhang, J., et al. Inhibition of monoacylglycerol lipase prevents chronic traumatic encephalopathy-like neuropathology in a mouse model of repetitive mild closed head injury. J Cereb Blood Flow Metab. 35 (3), 443-453 (2015).
  10. Petraglia, A. L., et al. The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: a novel mouse model of chronic traumatic encephalopathy. J Neurotrauma. 31 (13), 1211-1224 (2014).
  11. Lumpkins, K. M., Bochicchio, G. V., Keledjian, K., Simard, J. M., McCunn, M., Scalea, T. Glial fibrillary acidic protein is highly correlated with brain injury. J Trauma. 65 (4), 778-782 (2008).
  12. Yang, Z., Wang, K. K. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 38 (6), 364-374 (2015).
  13. Liu, H., et al. Increased expression of ferritin in cerebral cortex after human traumatic brain injury. Neurol Sci. 34 (7), 1173-1180 (2013).
  14. Jordan, B. D., et al. The clinical spectrum of sport-related traumatic brain injury. Nat Rev Neurol. 9 (4), 222-230 (2013).
check_url/es/54530?article_type=t

Play Video

Citar este artículo
Yang, Z., Lin, F., Weissman, A. S., Jaalouk, E., Xue, Q., Wang, K. K. A Repetitive Concussive Head Injury Model in Mice. J. Vis. Exp. (116), e54530, doi:10.3791/54530 (2016).

View Video