Summary

Caractérisation biophysique des fonctions flagellaire moteur

Published: January 18, 2017
doi:

Summary

Recent findings suggest that bacterial flagellar motors sense a variety of environmental signals and remodel in response. The bead-assays discussed here are expected to help explain the role of remodeling in cellular adaptation to environmental stressors.

Abstract

The role of flagellar motors in bacterial motility and chemotaxis is well-understood. Recent discoveries suggest that flagellar motors are able to remodel in response to a variety of environmental stimuli and are among the triggers for surface colonization and infections. The precise mechanisms by which motors remodel and promote cellular adaptation likely depend on key motor attributes. The photomultiplier-based bead-tracking technique presented here enables accurate biophysical characterization of motor functions, including adaptations in motor speeds and switch-dynamics. This approach offers the advantage of real-time tracking and the ability to probe motor behavior over extended durations. The protocols discussed can be readily extended to study flagellar motors in a variety of bacterial species.

Introduction

Flagellar motors enable cells to swim by rotating helical extracellular filaments. The amount of torque the motor can generate for a given length of the flagellum (i.e., the viscous load) determines the swimming speeds. On the other hand, its ability to switch the direction of rotation controls cell migration in response to chemicals, a process known as chemotaxis. Chemotaxis and motility being virulence factors 1-3, flagellar motors have been well-characterized over the years 4. Mounting evidence now suggests that the motor acts as a mechanosensor — it mechanically detects the presence of solid substrates 5,6. This ability likely helps in triggering surface colonization and infections 5,7. As a result, the mechanisms whereby the motor senses surfaces and initiates signaling are of significance 8,9.

The flagellar motor can be readily studied by tethering the flagellum to a substrate and observing cell rotation. Such tethering was first achieved by Silverman and Simon, who worked with a polyhook mutant in E. coli and successfully attached hooks to glass substrates with anti-hook antibodies 10. The tethered-cell assay enabled researchers to study the responses of the motor-switch to a variety of chemical stimuli. For example, Segall and co-workers chemically stimulated tethered cells with the aid of iontophoretic pipettes. The corresponding changes in CWbias (the fraction of the time motors spin clockwise, CW) enabled them to measure the kinetics of adaptation in the chemotaxis network 11,12. While the tethered cell assay was effective in studying switch responses, it was only able to offer insights into motor mechanics over a limited range of viscous loads 13. To overcome this problem, Ryu and co-workers tethered spherical, latex beads to filament stubs on cells stuck to surfaces. The beads were then tracked using back-focal interferometry with weak optical traps 14. By working with beads of different sizes, researchers could study the motor over a much wider range of loads. This assay was later improved by Yuan and Berg, who developed a photomultiplier-based bead-tracking technique combined with laser dark-field illumination. Their method enabled tracking of tethered gold nanobeads that were so tiny (~ 60 nm) that the external viscous resistances were lower compared to the internal viscous resistances to rotation 15,16. This led to the measurements of the maximum achievable speeds in E. coli (~ 300 Hz). In V. alginolyticus, similar bead assays enabled measurements of the spinning rates at intermediate viscous loads (~ 700 Hz) 17. By enabling measurements of motor responses over the entire possible range of viscous loads (from zero-load to near-stall), the bead-assays provided an important biophysical tool to understand the torque-generation process 18,19.

Recently, we modified the Yuan-Berg assay to include optical tweezers that enabled us to apply precise mechanical stimuli to individual motors 6. Using this technique, we showed that the force-generators that rotate the motor are dynamic mechanosensors — they remodel in response to changes in viscous loads. It is possible that such load-sensing triggers cell differentiation into swarming bacteria, although the mechanisms remain unclear. It is also likely that the flagellar motors in other species are also mechanosensitive 20, although direct evidence is lacking. Here, we discuss the photomultiplier-based (PMT) approach for tracking the rotation of latex beads tethered to flagellar filaments 15. In comparison to tracking with ultrafast cameras, the photomultiplier-setup is advantageous because it is relatively straightforward to track single beads in real-time and over long durations. It is particularly useful when studying long-time remodeling in flagellar motor complexes due to environmental stimuli 21. Though we detail protocols specifically for E. coli, they can be readily adapted for studying flagellar motors in other species.

Protocol

1. Cell Preparation Grow overnight cultures of the desired strain carrying the sticky fliC allele 15,22 in Tryptone Broth (TB, 1% Peptone, 0.5% NaCl) followed by inoculation at 1:100 dilution in 10 mL fresh TB. Grow the culture at 33 °C in a shaker incubator until OD600 = 0.5. Pellet the cells at 1,500 x g for 5 – 7 min and re-disperse the pellet vigorously in 10 mL of filter sterilized motility buffer (MB; 10 mM phosphate buffer: 0.05-0.06 M NaCl, 10-4…

Representative Results

The photomultiplier setup is shown in Figure 1A. It is important that the PMTs have high sensitivities over the range of wavelengths scattered by the beads of interest. The PMTs employed here operate in the visible and near-infrared ranges, and were able to detect light scattered by beads illuminated by a halogen light source. The optimum lighting conditions and supply voltages will vary from one setup to another. For the setup used in this work, a PMT gain ~ 104</su…

Discussion

In order to facilitate tethered bead-tracking and correct estimation of motor-torques, the following information should be reviewed. When performing these measurements with flagellated cells, shearing is a critical step. Shearing reduces the flagellar filament to a mere stub, thereby ensuring that the viscous load on the motor is predominantly due to the bead and can be estimated within 10% error 16. Shearing also improves the chances of finding circular trajectories with tightly distributed eccentricities (&#…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

The authors acknowledge Howard Berg for the gift of the bead-tracking microscope/photomultipliers and the Texas A&M Engineering Experiment Station for funds.

Materials

Poly-L-lysine Solution (0.1%) Sigma-Aldrich P8920 http://www.sigmaaldrich.com/catalog/product/sigma/p8920?lang=en&region=US
Polybead Microspheres Polysciences, Inc. 7307 http://www.sigmaaldrich.com/catalog/product/sigma/p8920?lang=en&region=US
1 ml Luer Slip Tip Syringe Exel Int. 26048 http://www.exelint.com/tuberculin_syringes.php
Clay Adams Intramedic Luer-Stub Adapter 23-gauge Becton, Dickinson and Company 427565 http://www.bd.com/ds/productCenter/ES-LuerStubAdaptors.asp
Polyethylene tubing Harvard Apparatus 59-8325 http://www.harvardapparatus.com/laboratory-polye-polyethylene-non-sterile-tubing.html
Photomultiplier Tubes Hamamatsu R7400U-20 Spectral response range of 300 to 920 nm, Peak wavelength 630 nm,  0.78 ns response time 
http://pdf1.alldatasheet.com/datasheet-pdf/view/212308/HAMAMATSU/R7400U-20.html
3×1 mm precision slits Edmund Optics NT39-908 2 slits mounted at right angles to one another on photomultiplier tubes
Oscilloscope Tektronix TBS 1032B Alternative brands are acceptable. Digital Oscilloscope, TBS 1000B Series, 2 Analogue, 30 MHz, 500 MSPS, 2.5 kpts 
http://www.tek.com/oscilloscope/tbs1000b-digital-storage-oscilloscope
8 Pole LP/HP Filter Krohn-Hite 3384 Alternative brands are acceptable. A frequency range from 0.1 Hz to 200 kHz is recommended.   
http://www.krohn-hite.com/htm/filters/PDF/3384Data.pdf
Optiphot microscope Nikon NA Any upright or inverted phase microscope can be used.
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=754
50:50 (R:T) Cube Beamsplitter ThorLabs BS013

Referencias

  1. Emody, L., Kerenyi, M., Nagy, G. Virulence factors of uropathogenic Echerichia coli. Int J Antimicrob. Ag. 22, 29-33 (2003).
  2. Lane, M. C., et al. Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun. 73 (11), 7644-7656 (2005).
  3. Kao, C. Y., et al. The complex interplay among bacterial motility and virulence factors in different Escherichia coli infections. Eur J Clin Microbiol Infect Dis. 33 (12), 2157-2162 (2014).
  4. Berg, H. C. The rotary motor of bacterial flagella. Annu Rev Biochem. 72, 19-54 (2003).
  5. McCarter, L., Hilmen, M., Silverman, M. Flagellar Dynamometer Controls Swarmer Cell Differentiation of V. parahaemolyticus. Cell. 54 (3), 345-351 (1988).
  6. Lele, P. P., Hosu, B. G., Berg, H. C. Dynamics of mechanosensing in the bacterial flagellar motor. Proc Natl Acad Sci U S A. 110 (29), 11839-11844 (2013).
  7. Gode-Potratz, C. J., Kustusch, R. J., Breheny, P. J., Weiss, D. S., McCarter, L. L. Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol. 79 (1), 240-263 (2011).
  8. Kearns, D. B. A field guide to bacterial swarming motility. Nat Rev Microbiol. 8 (9), 634-644 (2010).
  9. Belas, R. Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol. 22 (9), 517-527 (2014).
  10. Silverman, M., Simon, M. Flagellar rotation and the mechanism of bacterial motility. Nature. 249, 73-74 (1974).
  11. Block, S. M., Segall, J. E., Berg, H. C. Adaptation Kinetics in Bacterial Chemotaxis. J Bacteriol. 154 (1), 312-323 (1983).
  12. Segall, J. E., Block, S. M., Berg, H. C. Temporal comparisons in bacterial chemotaxis. Proc Natl Acad Sci U S A. 83, 8987-8991 (1986).
  13. Blair, D. F., Berg, H. C. Restoration of torque in defective flagellar motors. Science. 242 (4886), 1678-1681 (1988).
  14. Ryu, W. S., Berry, R. M., Berg, H. C. Torque-generating units of the flagellar motor of Escherchia coli have a high duty ratio. Nature. 403, 444-447 (2000).
  15. Yuan, J., Berg, H. C. Resurrection of the flagellar rotary motor near zero load. Proc Natl Acad Sci U S A. 105 (4), 1182-1185 (2008).
  16. Yuan, J., Fahrner, K. A., Berg, H. C. Switching of the bacterial flagellar motor near zero load. J Mol Biol. 390 (3), 394-400 (2009).
  17. Sowa, Y., Hotta, H., Homma, M., Ishijima, A. Torque-speed Relationship of the Na+-driven Flagellar Motor of Vibrio alginolyticus. J Mol Biol. 327 (5), 1043-1051 (2003).
  18. Xing, J., Bai, F., Berry, R., Oster, G. Torque-speed relationship of the bacterial flagellar motor. Proc Natl Acad Sci U S A. 103 (5), 1260-1265 (2006).
  19. Meacci, G., Tu, Y. Dynamics of the bacterial flagellar motor with multiple stators. Proc Natl Acad Sci U S A. 106 (10), 3746-3751 (2009).
  20. Lele, P. P., Roland, T., Shrivastava, A., Chen, Y. H., Berg, H. C. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backwards. Nat Phys. 12 (2), 175-178 (2016).
  21. Lele, P. P., Shrivastava, A., Roland, T., Berg, H. C. Response thresholds in bacterial chemotaxis. Sci Adv. 1 (9), e1500299 (2015).
  22. Berg, H. C., Turner, L. Torque Generated by the Flagellar Motor of Escherichia coli. Biophys J. 65, 2201-2216 (1993).
  23. Bai, F., et al. Conformational Spread as a Mechanism for Cooperativity in the Bacterial Flagellar Switch. Science. 327, 685-689 (2010).
  24. Reid, S. W., et al. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci U S A. 103, 8066-8071 (2006).
  25. Chen, X., Berg, H. C. Torque-Speed Relationship of the Flagellar Rotary Motor of Escherichia coli. Biophys J. 78, 1036-1041 (2000).
  26. Turner, L., Caplan, S. R., Berg, H. C. Temperature-induced switching of the bacterial flagellar motor. Biophys J. 71, 2227-2233 (1996).

Play Video

Citar este artículo
Ford, K. M., Chawla, R., Lele, P. P. Biophysical Characterization of Flagellar Motor Functions. J. Vis. Exp. (119), e55240, doi:10.3791/55240 (2017).

View Video