Summary

マウス胎児腎臓の解剖および培養

Published: May 17, 2017
doi:

Summary

このプロトコルは、マウス胚からのmetanephric基盤を単離および培養するための方法を記載する。

Abstract

このプロトコールの目的は、マウスのメタネフリカの基礎の解剖、単離および培養のための方法を記述することである。

哺乳動物の腎臓発達中、2つの前駆組織、尿管芽および間葉間葉は、最終的に腎臓の収集系およびネフロンを形成するために、細胞機構を伝達し相互に誘導する。哺乳動物の胚が子宮内で増殖し、したがって観察者が接近できないので、器官培養が開発されている。この方法により、腎臓器官形成の間に上皮間葉相互作用および細胞の挙動を研究することが可能である。さらに、先天性腎臓および泌尿生殖路奇形の起源を調べることができる。慎重な解剖の後、metanephricの手先は、培地上に浮遊するフィルター上に移され、数日間細胞培養インキュベーターに保持することができます。しかし、条件が人工的であり、組織内の代謝に影響を及ぼす可能性がある。また、外植片に存在する細胞外基質および基底膜のために、試験物質の浸透が制限される可能性がある。

器官培養の1つの主な利点は、実験者が器官に直接アクセスできることである。この技術は安価で簡単であり、生物学的に活性な物質の添加、遺伝子変異の研究、高度なイメージング技術の適用など、多数の改変が可能である。

Introduction

The mammalian kidney is derived from two primordial structures with mesodermal origin: the tubular epithelial ureteric bud and the metanephric mesenchyme. During nephrogenesis, the ureteric bud invades the metanephric mesenchyme and branches to form the collecting system. The metanephric mesenchyme gives rise to the epithelial elements of the nephrons. These processes occur in a precisely timed and spatially coordinated manner and are initiated by reciprocal inductive mechanisms. Both tissue components communicate and affect the other’s cell morphogenesis.

In the 1920s, it was Boyden who performed the in vivo obstruction of the mesonephric duct in chicken, providing the first indication of inductive interactions as separated nephric blastema fail to differentiate1. At about the same time, the first successful attempts to culture chicken nephric rudiments in a hanging drop were published. Subsequently, the organ culture was developed to study tissue interactions in mammalian organogenesis. In the 1950s, Grobstein developed a technique in which metanephric rudiments could be cultured on a filter. This technique was modified by Saxén, who placed the filter on a Trowell-type screen in a culture dish1. Over the years, many modifications and applications for organ culture have emerged. The method described here is based on Saxén’s technique but is simplified, as the filters float free on the medium and the diameter of the culture well only slightly exceeds the diameter of the filter, limiting unwanted movement of the filter.

Whole-organ culture is a classical, cheap, and simple but powerful tool to investigate cellular processes and intercellular communication during organogenesis. Organ culture allows for treatment with biological agents, such as growth factors, antibodies, antisense oligonucleotides, viruses, and peptides, as well as with pharmaceutical compounds and other chemicals. Also, gene function may be studied using explants derived from genetically modified mice or using inducible gene inactivation technology, such as the Cre-loxP system. This allows for the study of genetic mutations that cause embryonic lethality prior to the development of the kidney. Organ culture can also be combined with fluorescent tagging for gene function or lineage tracing and modern imaging techniques, which enable real-time monitoring of cell behavior2.

In the specific example provided here, the effect of EphrinB2-activated Eph-receptor signaling on the branching morphology of the ureteric bud was investigated. The morphology of the EphA4/EphB2 double-knockout mice suggested several severe defects in kidney development, which were detectable as early as embryonic day 11 (E11) and involved the ureteric bud, the ureter, and the common nephric duct3. Signaling via Eph receptors requires the clustering of the ligand-receptor dimer4. To over-activate Eph signaling, the kidney rudiments from E11.5 mouse embryos were cultured in the presence of clustered recombinant EphrinB2-Fc. EphrinB2 is a known ligand for the EphA4 receptor, which is expressed in the ureteric bud tips3.

Protocol

マウスは、スウェーデンの規制およびEU法(2010/63 / EU)に従って維持された。すべての手続きはスウェーデン倫理委員会のガイドライン(C79 / 9、C248 / 11、C135 / 14の許可)に従って実施された。ハイデルベルク大学での動物被験者の手順は、ハイデルベルク大学のRegierungspräsidiumKarlsruheとAnimal Welfare Officersによって承認されています。 1.培養用試薬および材料の調製<p class…

Representative Results

Metanephric kidney anlagenは、E11.5で妊娠したBlack-6近交系マウスに由来し、培養した。 3日後、尿管芽は5回まで分岐し、最初はT字型の尿管芽が分岐した。各外植片を撮影し、分節世代を決定し、分枝あたりのエンドポイントの数を計算するために、セグメントおよびエンドポイントの数を定量化した( 図1 )。 ImageJ( rd世代;第4世代は、移植外植片の?…

Discussion

この写本は、発達中のメタネフリカのanlagenをマウスの胚から単離し、器官を培養する方法を記述しています。この方法は、Grobstein 8とSaxén9,10によって開発された標準的な手法であり、多くの他者11,12によって適応され、変更されています。この方法の成功は、主に、外植片の生存および誘導電位の低下が切開時間の延長に伴う切開の持続時間に依存する。?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

筆者はLeif OxburghとDerek Adamsの知識共有、Leif Oxburghの原稿への有用なコメント、StefanWölflとUlrikeMüllerのテクニカルサポート、Saskia Schmitteckert、Julia Gobbert、Sascha Weyer、Viola Mayerに感謝します。ラボこの研究は、Development、The Biology of Company (CPへ)によって支持された

Materials

DMEM/F-12 Thermo Fisher Scientific 21331020
Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Scientific 15140148
GlutaMAX Supplement Thermo Fisher Scientific 35050061
DPBS, calcium, magnesium Thermo Fisher Scientific 14040117 use for dissection
holo-Transferrin human Sigma-Aldrich T0665
Insulin-Transferrin-Selenium (ITS -G) (100X) Thermo Fisher Scientific 41400045
Paraformaldehyde Sigma-Aldrich 158127
Amphotericin B solution Sigma-Aldrich A2942
Triton X-100 Sigma-Aldrich X100
Sodium azide Sigma-Aldrich S8032
Thimerosal Sigma-Aldrich T5125
Propyl gallate Sigma-Aldrich 2370
Mowiol 4-88 Sigma-Aldrich 81381
Glycerol Sigma-Aldrich G5516
Biotinylated Dolichorus Biflorus Agglutinin Vector Laboratories B-1035
Alexa488 conjugated Streptavidin Jackson Immuno Research 016-540-084
Recombinant Mouse Ephrin-B2 Fc Chimera Protein, CF R&D Systems 496-EB
Recombinant Human IgG1 Fc, CF R&D Systems 110-HG-100
Goat Anti-Human IgG Fc Antibody R&D Systems G-102-C
Phosphate buffered saline tablets Sigma-Aldrich P4417 use for fixation and immunostaining
Dumont #5, biologie
tips, INOX, 11cm
agnthos.se 0208-5-PS 2 pairs of forceps are needed
Iris scissors, straight, 12cm agnthos.se 03-320-120
Dressing Forceps,
straight, delicate, 13cm
agnthos.se 08-032-130
Petri dishes Nunclo Delta treated Thermo Fisher Scientific 150679
TMTP01300 Isopore Membrane Filter, polycarbonate, Hydrophilic, 5.0 µm, 13 mm, white, plain MerckMillipore TMTP01300
Nunclon Multidishes
4 wells, flat bottom
Sigma-Aldrich D6789-1CS
Microscope cover glass24x50mm thickn. No.1.5H 0.17+/-0.005mm nordicbiolabs 107222
Cover glasses No.1.5, 18x18mm nordicbiolabs 102032
Slides ~76x26x1, 1/2-w. ground plain nordicbiolabs 1030418
VWR Razor Blades VWR 55411-055
50 mL centrifuge tubes Sigma-Aldrich CLS430828
15 mL centrifuge tubes Sigma-Aldrich CLS430055
Whatman prepleated qualitative filter paper, Grade 113V, creped Sigma-Aldrich WHA1213125
Fixed stage research mircoscope Olympus BX61WI
Black 6 inbred mice, male, C57BL/6NTac Taconic B6-M
Black 6 inbred mice,female, C57BL/6NTac Taconic B6-F
Greenough Stereo Microscope Leica Leica S6 E

Referencias

  1. Saxén, L. . Organogenesis of the kidney. Developmental and Cell Biology Series. 19, (1987).
  2. Lindström, N. O., et al. Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron. eLife. 4, e04000 (2015).
  3. Peuckert, C., et al. Multimodal Eph/Ephrin signaling controls several phases of urogenital development. Kidney Int. 90 (2), 373-388 (2016).
  4. Pasquale, E. B. Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 6 (6), 462-475 (2005).
  5. Bonanomi, D., et al. Ret Is a Multifunctional Coreceptor that Integrates Diffusible- and Contact-Axon Guidance Signals. Cell. 148 (2), 568-582 (2012).
  6. Brown, A. C., et al. Isolation and Culture of Cells from the Nephrogenic Zone of the Embryonic Mouse Kidney. J Vis Exp. (50), e2555 (2011).
  7. Grobstein, C. Inductive interaction in the development of the mouse metanephros. J Exp Zool. 130, 319-340 (1955).
  8. Saxén, L., Toivonen, S. . Primary Embryonic Induction. , (1962).
  9. Saxén, L., Koskimies, O., Lahti, A., Miettinen, H., Rapola, J., Wartiovaara, J. Differentiation of kidney mesenchyme in an experimental model system. Adv Morphog. 7, 251-293 (1968).
  10. Dudley, A. T., Godin, R. E., Robertson, E. J. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 13, 1601-1613 (1999).
  11. Perälä, N., et al. Sema4C-Plexin B2 signalling modulates ureteric branching in developing kidney. Differentiation. 81 (2), 81-91 (2011).
  12. Thesleff, I., Ekblom, P. Role of transferrin in branching morphogenesis, growth and differentiation of the embryonic kidney. J Embryol exp Morph. 82, 147-161 (1984).
  13. Watanabe, T., Costantini, F. Real-time analysis of ureteric bud branching morphogenesis. Dev Biol. 271, 98-108 (2004).
  14. Sebinger, D. D. R., Unbekandt, M., Ganeva, V. V., Ofenbauer, A., Werner, C., Davies, J. A. A Novel, Low-Volume Method for Organ Culture of Embryonic Kidneys That Allows Development of Cortico-Medullary Anatomical Organization. PLoS One. 5 (5), e10550 (2010).
  15. Ekblom, P., Miettinen, A., Virtanen, I., Wahlström, T., Dawnay, A., Saxén, L. In vitro segregation of the metanephric nephron. Dev Biol. 84 (1), 88-95 (1981).
  16. Davies, J. A., Unbekandt, M. siRNA-mediated RNA interference in embryonic kidney organ culture. Methods Mol Biol. 886, 295-303 (2012).
  17. Saxén, L., Lehtonen, E. Embryonic kidney in organ culture. Differentiation. 36 (1), 2-11 (1987).
  18. Bard, J. B. L. The development of the mouse kidney embryogenesis writ small. Curr Opin Genet Dev. 2, 589-595 (1992).
  19. Davies, J. A. A method for cold storage and transport of viable embryonic kidney rudiments. Kidney Int. 70 (11), 2031-2034 (2006).
  20. Batourina, E., et al. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet. 32 (1), 109-115 (2002).
check_url/es/55715?article_type=t

Play Video

Citar este artículo
Aresh, B., Peuckert, C. Dissection and Culture of Mouse Embryonic Kidney. J. Vis. Exp. (123), e55715, doi:10.3791/55715 (2017).

View Video