Summary

Transfer of Mammary Gland-forming Ability Between Mammary Basal Epithelial Cells and Mammary Luminal Cells via Extracellular Vesicles/Exosomes

Published: June 03, 2017
doi:

Summary

This protocol describes methods for purifying, quantitating, and characterizing extracellular vesicles (EVs)/exosomes from non-adherent/mesenchymal mammary epithelial cells and for using them to transfer mammary gland-forming ability to luminal mammary epithelial cells. EVs/exosomes derived from stem-like mammary epithelial cells can transfer this cell property to cells that ingest the EVs/exosomes.

Abstract

Cells can communicate via exosomes, ~100-nm extracellular vesicles (EVs) that contain proteins, lipids, and nucleic acids. Non-adherent/mesenchymal mammary epithelial cell (NAMEC)-derived extracellular vesicles can be isolated from NAMEC medium via differential ultracentrifugation. Based on their density, EVs can be purified via ultracentrifugation at 110,000 x g. The EV preparation from ultracentrifugation can be further separated using a continuous density gradient to prevent contamination with soluble proteins. The purified EVs can then be further evaluated using nanoparticle-tracking analysis, which measures the size and number of vesicles in the preparation. The extracellular vesicles with a size ranging from 50 to 150 nm are exosomes. The NAMEC-derived EVs/exosomes can be ingested by mammary epithelial cells, which can be measured by flow cytometry and confocal microscopy. Some mammary stem cell properties (e.g., mammary gland-forming ability) can be transferred from the stem-like NAMECs to mammary epithelial cells via the NAMEC-derived EVs/exosomes. Isolated primary EpCAMhi/CD49flo luminal mammary epithelial cells cannot form mammary glands after being transplanted into mouse fat pads, while EpCAMlo/CD49fhi basal mammary epithelial cells form mammary glands after transplantation. Uptake of NAMEC-derived EVs/exosomes by EpCAMhi/CD49flo luminal mammary epithelial cells allows them to generate mammary glands after being transplanted into fat pads. The EVs/exosomes derived from stem-like mammary epithelial cells transfer mammary gland-forming ability to EpCAMhi/CD49flo luminal mammary epithelial cells.

Introduction

Exosomes can mediate cellular communication by transferring membrane and cytosolic proteins, lipids, and RNAs between cells1. Exosome-mediated communication has been demonstrated to be involved in many physiological and pathological processes (i.e., antigen presentation, development of tolerance2, and tumor progression3). Exosomes often have contents similar to those of the source cells releasing them. Thus, the exosomes can carry specific cell properties from the source cells and transfer these properties to the cells ingesting them4.

Exosomes are 50- to 150-nm double-layer membrane vesicles and present specific markers (e.g., CD9, CD81, CD63, HSP70, Alix, and TSG101). Thus, exosomes must be characterized by various methods for different aspects. Transmission electron microscopy can be used to visualize membrane vesicles such as exosomes4,5. Nanoparticle tracking analysis (NTA) and dynamic light scattering analysis (DLS) are used for measuring the size and number of purified exosomes4. The lipid membrane content of exosomes can be verified by density gradient. Exosomal markers, such as CD9, CD81, CD63, HSP70, Alix, and TSG1016,7, can be measured by Western blotting.

Mammary basal cells have the ability to generate mammary glands when implanted into fat pads, while luminal cells cannot8,9,10. Thus, mammary basal cells are also referred to as mammary repopulating units. By using the model of mammary basal and luminal cells, the ability of EVs/exosomes to transfer cell characteristics between different cell populations can be examined. This work demonstrates the method of transferring gland-forming ability from mammary basal epithelial cells to mammary luminal epithelial cells by using EVs/exosomes derived from mammary basal epithelial cells. Luminal mammary epithelial cells acquired basal cell properties following the ingestion of EVs/exosomes secreted from basal cells and can then form mammary glands4.

Protocol

All research involving animals complied with protocols approved by the Institutional Committee on Animal Care. 1. Extracellular Vesicle/exosome Isolation and Validation Culture mammary epithelial basal cells, NAMECs4, with fresh, serum-free medium made of 500 mL of MCDB 170, pH 7.4 + 500 mL of DMEM/F12 with sodium bicarbonate (0.2438%); EGF (5 ng/mL); hydrocoritisone (0.5 µg/mL); insulin (5 µg/mL); bovine pituitary extract (BPE; 35 µg/mL); and…

Representative Results

Since it has been shown that blocking PGE2/EP4 signaling triggers EV/exosome release from mammary basal-like stem cells4, this work presents a method of isolating the induced EVs/exosomes from mammary epithelial basal cell (NAMEC) culture. Since NAMECs are cultured in serum-free medium, there are no pre-existing EVs/exosomes derived from serum13. For cells cultured in serum-containing medium, pre-existing exosomes in th…

Discussion

Exosomes often carry characteristics of the cells that released them, and the amount of released exosomes can be induced by stimuli4. The culture medium of cells can be collected and subjected to differential ultracentrifugation for EV/exosome collection (Figure 1). There is currently no general agreement on an ideal method to isolate EVs/exosomes. The optimal method used here has been determined by the downstream application14. Ultracentrifuga…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was supported by grants from the National Health Research Institutes (05A1-CSPP16-014, H.J.L.) and from the Ministry of Science and Technology (MOST 103-2320-B-400-015-MY3, H.J.L).

Materials

MCDB 170  USBiological M2162
DMEM/F12 Thermo 1250062
Optima L-100K ultracentrifuge Beckman 393253
SW28 Ti Rotor Beckman 342204
SW41 Rotor Beckman 331306
NANOSIGHT LM10 Malvern NANOSIGHT LM10 for nanoparticle tracking analysis (NTA)
Optiprep  Sigma-Aldrich D1556 60% (w/v) solution of iodixanol in water (sterile).
CD81 antibody GeneTex GTX101766 1:1000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
CD9 antibody GeneTex GTX100912 1:1000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
CD63 antibody Abcam Ab59479 1:1000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
TSG101 antibody GeneTex GTX118736 1:1000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
GAPDH GeneTex GTX100118 1:6000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
CFSE (carboxyfluorescein succinimidyl diacetate ester) Thermo V12883
FACSCalibur BD Biosciences fluorescence cell analyzer
collagenase Type IV  Thermo 17104019
trypsin Thermo 27250018
 ITS Sigma-Aldrich I3146 a mixture of recombinant human insulin, human transferrin, and sodium selenite
accutase ebioscience 00-4555-56 a natural enzyme mixture with proteolytic and collagenolytic enzyme activity
dispase  STEMCELL 7913 5 mg/ml = 5 U/ml
anti-CD49f antibody Biolegend 313611 1:50
anti-EpCAM antibody Biolegend 118213 1:200
FACSAria BD Biosciences cell sorter
carmine alum Sigma-Aldrich C1022
human mammary epithelial cells (HMLE cells, NAMECs) gifts from Dr. Robert Weinberg
permount Thermo Fisher Scientific  SP15-500
sodium bicarbonate Zymeset  BSB101
EGF Peprotech AF-100-015
Hydrocoritisone Sigma-Aldrich SI-H0888
Insulin  Sigma-Aldrich SI-I9278
BPE (bovine pituitary extract) Hammod Cell Tech  1078-NZ
GW627368X  Cayman 10009162
15-cm culture dish Falcon  353025
table-top centrifuge Eppendrof  Centrifuge 3415R
ultracentrifuge tube Beckman 344058
PBS (Phosphate-buffered saline)  Corning 46-013-CM
BCA Protein Assay Thermo Fisher Scientific  23228
Transmission Electron Microscopy Hitachi HT7700
gelatin  STEMCELL 7903
10-cm culture dish Falcon  353003
6-well culture dish Corning 3516
female C57BL/6 mice NLAC (National Laboratory Animal Center
FBS (Fetal Bovine Serum) BioWest  S01520
gentamycin Thermo Fisher Scientific  15710072
Pen/Strep Corning 30-002-Cl
DNase I 5PRIMER 2500120
isofluorane  Halocarbon NPC12164-002-25
formaldehyde MACRON H121-08
EtOH (Ethanol) J.T. Baker 800605
glacial acetic acid Panreac 131008.1611
aluminum potassium sulfate Sigma-Aldrich 12625
Xylene  Leica 3803665
0.22 μm membranes Merck Millipore Millex-GP
AUTOCLIP Wound Clips, 9 mm BD Biosciences 427631
AUTOCLIP Wound Clip Applier BD Biosciences 427630
CellMask™ Deep Red Thermo Fisher Scientific  C10046 plasma membrane stain

Referencias

  1. Simons, M., Raposo, G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol. 21 (4), 575-581 (2009).
  2. Théry, C., Ostrowski, M., Segura, E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 9 (8), 581-593 (2009).
  3. Boelens, M., et al. Exosome Transfer from Stromal to Breast Cancer Cells Regulates Therapy Resistance Pathways. Cell. 159 (3), 499-507 (2014).
  4. Lin, M. C., et al. PGE2 /EP4 Signaling Controls the Transfer of the Mammary Stem Cell State by Lipid Rafts in Extracellular Vesicles. Stem Cells. , (2016).
  5. Théry, C., Amigorena, S., Raposo, G., Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. , (2006).
  6. György, B., et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 68 (16), 2667-2688 (2011).
  7. Olver, C., Vidal, M. Proteomic analysis of secreted exosomes. Subcell Biochem. 43, 99-131 (2007).
  8. Shackleton, M., et al. Generation of a functional mammary gland from a single stem cell. Nature. 439 (7072), 84-88 (2006).
  9. Prater, M. D., et al. Mammary stem cells have myoepithelial cell properties. Nat Cell Biol. 16 (10), 942-950 (2014).
  10. Stingl, J., et al. Purification and unique properties of mammary epithelial stem cells. Nature. 439 (7079), 993-997 (2006).
  11. Gardiner, C., Ferreira, Y. J., Dragovic, R. A., Redman, C. W., Sargent, I. L. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2, (2013).
  12. Shapiro, A. L., Viñuela, E., Maizel, J. V. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 28 (5), 815-820 (1967).
  13. Riches, A., Campbell, E., Borger, E., Powis, S. Regulation of exosome release from mammary epithelial and breast cancer cells – a new regulatory pathway. Eur J Cancer. 50 (5), 1025-1034 (2014).
  14. Witwer, K. W., et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2, (2013).
  15. van der Vlist, E. J., Nolte-‘t Hoen, E. N., Stoorvogel, W., Arkesteijn, G. J., Wauben, M. H. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc. 7 (7), 1311-1326 (2012).
  16. Kowal, J., et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 113 (8), E968-E977 (2016).
  17. Li, D., et al. ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science. 349 (6251), (2015).
  18. Outzen, H. C., Custer, R. P. Growth of human normal and neoplastic mammary tissues in the cleared mammary fat pad of the nude mouse. J Natl Cancer Inst. 55 (6), 1461-1466 (1975).
  19. Sheffield, L. G., Welsch, C. W. Transplantation of human breast epithelia to mammary-gland-free fat-pads of athymic nude mice: influence of mammotrophic hormones on growth of breast epithelia. Int J Cancer. 41 (5), 713-719 (1988).
check_url/es/55736?article_type=t

Play Video

Citar este artículo
Lin, M., Chen, S., He, P., Luo, W., Li, H. Transfer of Mammary Gland-forming Ability Between Mammary Basal Epithelial Cells and Mammary Luminal Cells via Extracellular Vesicles/Exosomes. J. Vis. Exp. (124), e55736, doi:10.3791/55736 (2017).

View Video