Summary

慢性肝损伤小鼠胆碱缺乏、氨基补充的饮食模型

Published: October 21, 2017
doi:

Summary

在这里, 我们描述了一个常见的方法来诱导慢性肝损伤小鼠通过喂养的胆碱缺乏和氨基补充 (多) 饮食。我们展示健康监测, 肝脏灌注, 隔离和保存。六周的时间过程可以告知肝损伤、病理、纤维化、炎症和肝祖细胞反应。

Abstract

慢性肝病, 如病毒性肝炎、酒精性肝病或非酒精脂肪肝, 其特征是持续性炎症、肝实质的渐进破坏和再生, 肝祖细胞增殖和纤维化。每个慢性肝病的终末期是肝硬化, 是肝癌发展的主要危险因素。为了研究控制疾病的起始、建立和进展的过程, 实验室中使用了几种动物模型。在这里, 我们描述了六周的时间过程中的胆碱缺乏和氨基补充 (多) 小鼠模型, 其中包括喂养六周的老雄性 C57BL/6J 小鼠与胆碱缺乏的 chow 和 0.15% DL 氨基补充饮用水。对动物健康的监测和典型的体重损失曲线进行了解释。该协议显示了经心脏穿刺治疗的肝脏和血液采集的总检查结果, 随后进行血清分析。其次, 肝脏灌注技术和收集不同的肝叶的标准评价显示, 包括肝组织学评估的苏木精和曙红或天狼星红色染色, 荧光检测肝细胞数量以及对肝脏微环境的转录分析。这种小鼠模型适于研究慢性肝病诱发的炎症、化和肝祖细胞动力学, 并可用于测试可能调节这些过程的潜在治疗剂。

Introduction

肝脏是身体的最大的腺新陈代谢的器官并且有许多复杂作用。肝脏的关键作用包括消化、新陈代谢、解毒、储存必要的营养素、生产血浆蛋白组分、以及通过驻留巨噬细胞或枯否体细胞介导的免疫。肝脏有很大的能力再生, 即使高达70-90% 的总质量损失。在急性肝损伤的情况下, 如看到部分肝切除或扑热息痛中毒, 其余健康肝细胞增殖, 以修复在高度协调的过程中的损害1。然而, 当肝细胞因长期病毒感染、酒精或非酒精性脂肪肝而长期受伤时, 炎症微环境引发肝纤维化的活化, 并肝祖细胞增殖 (LPCs), 有可能分化为胆管或肝细胞2,3,4,5。确切的起源, 分化命运的 LPCs, 他们对肝脏再生的贡献, 和肝癌一直是激烈辩论的话题, 很可能取决于伤害的严重性和上下文2。早期再生相关事件的顺序也有争议的讨论, 一些研究人员指出, 肝星状细胞活化和基质重塑对于产生 LPC 偏爱的小生境6是必不可少的, 而其他报告, 要触发纤维7, 需要 LPC 扩展和 so-called 胆管反应。有许多动物模型研究损伤和再生的具体方面, 试图了解所有的潜在因素, 调节疾病进展, 并最终制定新的治疗策略的病人8

本发明的胆碱缺乏和氨基补充的饮食模型最初是为大鼠使用的, 后来改性用于小鼠的慢性肝损伤诱导,9,10。膳食缺乏的胆碱导致受损的组装和分泌非常低密度脂蛋白。结合 hepatocarcinogen dl-氨基, 这种方案导致过量的肝脏脂肪负荷, 连续炎症, periportal 纤维化, LPC 反应和长期肝癌的发展11,12.然而, 重要的是, 不同的小鼠菌株表现出鲜明的炎症, 化和 LPC 反应动力学13。本协议描述了慢性肝损伤诱导的 C57BL/6J 小鼠, 最常用的近交系小鼠品系。

在慢性肝病的研究中, 典型的分析包括苏木精和红素的组织学评估以及天狼星红色染色, 以可视化胶原沉积、免疫组织化学或荧光检测肝细胞的数量,组通过复杂生长因子和细胞因子网络协调诱导细胞变化的肝脏微环境分析14,15,16,17,18

Protocol

1. 动物实验 在本调查中描述的所有动物研究都是由科大学动物伦理委员会 (批准编号: AEC_2014_28) 在开始之前批准的根据《澳大利亚动物保育和使用守则》进行实验和执行. 动物 使用六周的老雄性 C57BL/6J 小鼠进行实验. 实验设计 到达动物设施后, 允许小鼠在任何实验开始前适应四天. 在小麦谷壳床上?…

Representative Results

在六周的时间过程中, 多因素诱发慢性肝损伤, 参数评估的天数 7 (归纳阶段), 14 和 21 (建立阶段) 和 42 (维护阶段)。与对照组小鼠相比, 经治疗的小鼠在初始适应阶段损失了20% 的初始体重, 并倾向于在建立和维护阶段重拾重量(图 1)。体重与血清丙氨酸转氨酶水平呈反比关系, 这是肝细胞损伤的指标(图 2)。…

Discussion

慢性肝病通常是一种无声的疾病, 大多数患者无症状, 它是一个主要的贡献, 发病率和死亡率在世界范围内。慢性酒精中毒和丙肝病毒感染是主要原因。慢性肝损伤的特点是肝脏炎症、纤维化和严重的肝硬化、肝癌和最终肝功能衰竭。目前尚无治疗方法, 虽然已取得重大进展, 了解肝脏疾病的机制, 但仍然迫切需要新的治疗途径。

时间饮食是一个简单的, 容易管理的模型, 诱导和?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作得到了澳大利亚国家卫生和医学研究理事会 (APP1042370、APP1061332、APP1087125) 澳洲的资助。作者希望感谢科科卫生创新研究所的工作人员提供技术援助。

Materials

Six-week-old male C57BL/6J mice  Animal Resource Centre of Western Australia, Murdoch, WA,  Australia N/A
10 Kg Steam Cut Wheaten Chaff  Specialty Feeds, Glen Forrest, WA, Australia  N/A
Water for irrigation 1000ml bottle (Baxter)  Surgical House, Perth, WA, Australia  AHF7114A
Choline- deficient diet, modified (pellets)  MP Biomedicals Australasia Pty Limited, WA, Australia 02960210
DL-Ethionine  Sigma-Aldrich, Castle Hill, NSW,  Australia  E5139-25G
Ketamil injection  Troy Laboratories Pty Limited, Glendenning, NSW, Australia  N/A
Ilum Xylazil-20 injection  Troy Laboratories Pty Limited, Glendenning, NSW, Australia  N/A
27G x 1/2", Regular Wall Needle  Terumo Australia Pty Limited, NSW, Australia  NN-2713R
Syringes Terumo 1ml and 10ml  Terumo Australia Pty Limited, Macquarie Park, NSW, Australia  1018242, 1018037
Tissue-Tek OCT compound  VWR International Pty Limited, Tingalpa, QLD, Australia  25608-930
Neutral buffered formalin  Amber Scientific, Midvale, WA, Australia  NBF-2.5L
Ethanol absolute anaLaR normalpur  VWR International Pty Limited, Tingalpa, QLD, Australia  20821.33
Superfrost Plus slides  Grale Scientific Pty Limited, Ringwood, VIC, Australia  SF41296SP
Dako Protein Block, serum-free  Dako Australia Pty Limited, North Sydney, NSW, Australia   X090930-2
Dako antibody diluent  Dako Australia Pty Limited, North Sydney, NSW, Australia   s0809
rat anti-CD45  eBioscience, San Diego, California, USA  m0701  1/200 dilution
rabbit anti-panCK  Dako Australia Pty Limited, North Sydney, NSW, Australia   Z0622 1/300 dilution
Goat anti-rabbit (Alexa Fluor 488) Life Technologies Australia Pty Limited, Mulgrave, VIC, Australia A-11008 1/500 dilution
Goat anti-rat IgG (Alexa Fluor 594)  Life Technologies Australia Pty Limited, Mulgrave, VIC, Australia  A-11007 1/500 dilution
ProLong Gold Antifade Reagent with DAPI  Life Technologies Australia Pty Limited, Mulgrave, VIC, Australia  P36935  
Picrosirius Red Stain Kit Polysciences Inc., Warrington, PA, USA  ab150681 

Referencias

  1. Taub, R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol. 5, 836-847 (2004).
  2. Kohn-Gaone, J., Gogoi-Tiwari, J., Ramm, G. A., Olynyk, J. K., Tirnitz-Parker, J. E. The role of liver progenitor cells during liver regeneration, fibrogenesis, and carcinogenesis. Am J Physiol Gastrointest Liver Physiol. 310, G143-G154 (2016).
  3. Lu, W. Y., et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol. 17, 971-983 (2015).
  4. Prakoso, E., et al. Analysis of the intrahepatic ductular reaction and progenitor cell responses in hepatitis C virus recurrence after liver transplantation. Liver Transpl. 20, 1508-1519 (2014).
  5. Tirnitz-Parker, J. E., Tonkin, J. N., Knight, B., Olynyk, J. K., Yeoh, G. C. Isolation, culture and immortalisation of hepatic oval cells from adult mice fed a choline-deficient, ethionine-supplemented diet. Int J Biochem Cell Biol. 39, 2226-2239 (2007).
  6. Van Hul, N. K., Abarca-Quinones, J., Sempoux, C., Horsmans, Y., Leclercq, I. A. Relation between liver progenitor cell expansion and extracellular matrix deposition in a CDE-induced murine model of chronic liver injury. Hepatology. 49, 1625-1635 (2009).
  7. Clouston, A. D., et al. Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. Hepatology. 41, 809-818 (2005).
  8. Forbes, S. J., Newsome, P. N. Liver regeneration – mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol. 13, 473-485 (2016).
  9. Akhurst, B., et al. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology. 34, 519-522 (2001).
  10. Shinozuka, H., Lombardi, B., Sell, S., Iammarino, R. M. Early histological and functional alterations of ethionine liver carcinogenesis in rats fed a choline-deficient diet. Cancer Res. 38, 1092-1098 (1978).
  11. Knight, B., Tirnitz-Parker, J. E., Olynyk, J. K. C-kit inhibition by imatinib mesylate attenuates progenitor cell expansion and inhibits liver tumor formation in mice. Gastroenterology. 135, 969-979 (2008).
  12. Kohn-Gaone, J., et al. Divergent Inflammatory, Fibrogenic, and Liver Progenitor Cell Dynamics in Two Common Mouse Models of Chronic Liver Injury. Am J Pathol. 186, 1762-1774 (2016).
  13. Knight, B., et al. Attenuated liver progenitor (oval) cell and fibrogenic responses to the choline deficient, ethionine supplemented diet in the BALB/c inbred strain of mice. J Hepatol. 46, 134-141 (2007).
  14. Dwyer, B. J., Olynyk, J. K., Ramm, G. A., Tirnitz-Parker, J. E. TWEAK and LTbeta Signaling during Chronic Liver Disease. Front Immunol. 5, 39 (2014).
  15. Karin, M., Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature. 529, 307-315 (2016).
  16. Ruddell, R. G., et al. Lymphotoxin-beta receptor signaling regulates hepatic stellate cell function and wound healing in a murine model of chronic liver injury. Hepatology. 49, 227-239 (2009).
  17. Tirnitz-Parker, J. E., et al. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells. Hepatology. 52, 291-302 (2010).
  18. Viebahn, C. S., Yeoh, G. C. What fires prometheus? The link between inflammation and regeneration following chronic liver injury. Int J Biochem Cell Biol. 40, 855-873 (2008).
  19. Hayner, N. T., Braun, L., Yaswen, P., Brooks, M., Fausto, N. Isozyme profiles of oval cells, parenchymal cells, and biliary cells isolated by centrifugal elutriation from normal and preneoplastic livers. Cancer Res. 44, 332-338 (1984).
  20. Tee, L. B., Smith, P. G., Yeoh, G. C. Expression of alpha, mu and pi class glutathione S-transferases in oval and ductal cells in liver of rats placed on a choline-deficient, ethionine-supplemented diet. Carcinogenesis. 13, 1879-1885 (1992).
  21. Chayanupatkul, M., et al. Hepatocellular carcinoma in the absence of cirrhosis in patients with chronic hepatitis B virus infection. J Hepatol. 66, 355-362 (2017).
  22. Mittal, S., et al. Hepatocellular Carcinoma in the Absence of Cirrhosis in United States Veterans is Associated With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 14, 124-131 (2016).
check_url/es/56138?article_type=t

Play Video

Citar este artículo
Gogoi-Tiwari, J., Köhn-Gaone, J., Giles, C., Schmidt-Arras, D., Gratte, F. D., Elsegood, C. L., McCaughan, G. W., Ramm, G. A., Olynyk, J. K., Tirnitz-Parker, J. E. The Murine Choline-Deficient, Ethionine-Supplemented (CDE) Diet Model of Chronic Liver Injury. J. Vis. Exp. (128), e56138, doi:10.3791/56138 (2017).

View Video