Summary

Hydrodynamic Renal Pelvis Injection for Non-viral Expression of Proteins in the Kidney

Published: January 08, 2018
doi:

Summary

This protocol describes a method to inject plasmid DNA into the mouse kidney via the renal pelvis to produce transgene expression specifically in the kidney.

Abstract

Hydrodynamic injection creates a local, high-pressure environment to transfect various tissues with plasmid DNA and other substances. Hydrodynamic tail vein injection, for example, is a well-established method by which the liver can be transfected. This manuscript describes an application of hydrodynamic principles by injection of the mouse kidney directly with plasmid DNA for kidney-specific gene expression. Mice are anesthetized and the kidney is exposed by a flank incision followed by a fast injection of a plasmid DNA-containing solution directly into the renal pelvis. The needle is kept in place for ten seconds and the incision site is sutured. The following day, live animal imaging, Western blot, or immunohistochemistry may be used to assay gene expression, or other assays suited to the transgene of choice are used for detection of the protein of interest. Published methods to prolong gene expression include transposon-mediated transgene integration and cyclophosphamide treatment to inhibit the immune response to the transgene.

Introduction

The hydrodynamic tail vein injection technique has become a commonly used way to achieve high levels of gene expression in mouse liver1,2. The kidneys are also transfected by this technique at a much lower level, approximately 100-fold less3. The hydrodynamic renal pelvis injection described here provides a simple way to control the specificity of organ expression through physical means using the same hydrodynamic principles that have been established previously in liver4,5, muscle6, and other organs7,8. This method transfects cells in live animals in vivo by using pressure and speed to force fluid containing DNA into the cells, simultaneously inducing damage to the organ that is quickly resolved9. Using well-established surgical techniques to visualize the kidney via a flank incision10 along with a single injection by insulin syringe, we have found successful transfection of various types of kidney cells, mainly interstitial fibroblasts, tubules, and collecting duct11. Dissection of these mice has shown that other organs are not transfected at levels high enough to visualize by luciferase imaging techniques11. Since the technique is non-viral, use of plasmid DNA for transfection permits fast and easy preparation of the reagents required for injection.

We have used localized hydrodynamic injections to express the antioxidant glutathione S-transferase A4, the insulin-like growth factor-1 receptor, and the hormone erythropoietin in the kidney, all with the expected biological effects11,12,13. Detailed evaluation of route of administration, injection volume, DNA dosage, and promoter choice has been performed11. Additionally, both the piggyBac transposon system and/or cyclophosphamide treatment to suppress the immune reaction to the transgene have been shown to improve long-term gene expression outcomes11. Other investigators have used a renal vein approach in rat with success, achieving high transfection efficiency for time periods of greater than one month14. However, genetic correction of phenotypes mimicking human disease are usually performed in mice first as a proof-of-concept since most mammalian genetic models are mouse models. We compared renal vein injection to renal pelvis injection and found that injection into the renal pelvis was superior to the renal vein for gene expression (approximately ten-fold higher) and survival11. The renal pelvis is an ideal route of entry into the kidney because it is flexible enough to tolerate fluctuations in urine production and is often able to maintain its structural integrity even when dilated during hydronephrosis. Additionally, injection into the renal pelvis allowed access to the kidney without piercing the kidney capsule, allowing the injected fluid to be visibly retained by the kidney better than intraparenchymal injection. Other mouse organs do not have a route of entry other than the vasculature, but the urinary space of the kidney is an ideal injection site. Additionally, injection into the renal vein resulted in leakage of blood into the abdominal cavity. The total kidney volume of wild-type mouse kidneys has been estimated by magnetic resonance imaging to be approximately 0.2 cm3, so the volume of a single kidney is approximately equal to the amount of fluid injected by renal pelvis hydrodynamic injection (100 µL)15. Herein, we have made available all of the detailed nuances of the hydrodynamic renal pelvis injection protocol to achieve reproducible transfection of the kidney.

Protocol

All methods described here have been approved by the Institutional Animal Care and Use Committees (IACUCs) of Baylor College of Medicine and Vanderbilt University Medical Center. 1. Prepare the DNA solution for injection Select the plasmid(s) to express the transgene(s) carefully to maximize the desirable characteristics to improve transfection efficiency and transgene expression. NOTE: Hydrodynamic renal pelvis injection of plasmids to express the fluorescent marker TdTomat…

Representative Results

The surgery and injection technique are simple to perform once mastered, requiring no major equipment or expensive materials. If new to flank-incision kidney surgery, one training day on several mice scheduled for euthanasia should be allowed in which the mice are not recovered following surgery because the first attempt at this surgery may take much longer than normal. Alternatively, investigators familiar with similar techniques may find it quite simple. Carefully follow the illustratio…

Discussion

In this protocol a robust method for achieving reproducible gene expression specifically in the kidney is described. In the hands of a moderately experienced surgeon we have found the percentage of mice transfected by this technique to be in the range of 50-100%, depending on mouse age and the sensitivity of the readout of the transgene. The level of luciferase gene expression was above background for several months in mice receiving piggyBac transposons and completely maintained for several weeks in immunocompr…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

A Career Development Award from the Department of Veterans Affairs [BX002797] supported L.E.W. and the National Institutes of Health [R01-DK095867] and American Heart Association [15GRNT25700209] supported J.C. The National Institutes of Health [DK093660], Department of Veterans Affairs [BX002190], and the Vanderbilt Center for Kidney Disease supported M.H.W. This material is the result of work supported with resources and use of facilities at the VA Tennessee Valley Healthcare System.

Materials

AnaSed Xylazine Patterson Veterinary 07-808-1947 Anesthetic – Not controlled substance
BD Insulin Syringe 0.5 mL 29G 1/2 Inch Cardinal Health 309306 Required syringes
Buprenex Pharmacist/Veterinarian Analgesia – Controlled Substance
Dynarex Disposable Towel Drape Thermo Fisher Scientific 19-310-671 Place over heat pad
EndoFree Plasmid Maxi Kit Qiagen 12362 Use only endotoxin-free plasmid DNA
Endosafe Gel-Clot LAL Rapid Positive Control Charles River PC200 Positive control for endotoxin test
Endosafe Gel-Clot LAL Rapid Single Test Vial Charles River R13500 Endotoxin test
Extra Fine Micro Dissecting Scissors Roboz Surgical Instrument RS-5882 Surgical tool
Fisherbrand Instant Sealing Sterilization Pouch – 9" Thermo Fisher Scientific 01-812-51 For autoclaving surgical tools
Gaymar Heat Pump Paragon Medical TP-700 Water-circulating heat pump
Germinator 500 Roboz Surgical Instrument DS-401 To reuse surgical tools during surgery
Graefe Forceps Roboz Surgical Instrument RS-5136 Surgical tool
Graefe Tissue Forceps Roboz Surgical Instrument RS-5153 Surgical tool
Halsey Needle Holder, 5" Length Roboz Surgical Instrument RS-7841 Surgical tool
Heat pads – 15" x 21" – need at least 3 Paragon Medical TP22G For use with Gaymar Heat Pump
IsoFlo (Isoflurane, USP) Abbott Animal Health 5260-04-05 For imaging and euthanasia
Isotec Isoflurane Delivery System Vaporizor Smiths Medical VCT3K2 For imaging and euthanasia
Ketamine Pharmacist/Veterinarian Anesthetic – Controlled Substance
Kimwipes Kimberly-Clark Professional 34120 Laboratory tissues
Living Image software Caliper Life Sciences For live animal imaging
Luciferin Perkin Elmer 122796 For live animal imaging
Nanodrop 2000 Thermo Scientific ND-2000-US-CAN Spectrophotometer for DNA measurement
Prevantics Swabs Thermo Fisher Scientific 23-100-110 For skin surgery prep
Prolene 5-0 sutures Taper 30" Thermo Fisher Scientific NC0256891 Non-absorbable sutures for skin
Puralube Brand Opthalmic Ointment Patterson Veterinary 07-888-2572 To keep eyes moist during surgery
Trans IT – QR Hydrodynamic Delivery Solution Mirus Bio MIR-5240 Hydrodynamic delivery buffer for diluting DNA
Vicryl 5-0 Sutures J303H Thermo Fisher Scientific NC9816710 Absorbable sutures for muscle layer
Wahl Mini Arco Clipper Med-Vet International 8787-1550 Shaver for skin prep
Xenogen IVIS 200 Caliper Life Sciences For live animal imaging

Referencias

  1. Liu, F., Song, Y., Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6 (7), 1258-1266 (1999).
  2. Zhang, G., Budker, V., Wolff, J. A. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Human Gene Therapy. 10, 1735-1737 (1999).
  3. Fumoto, S., Nishimura, K., Nishida, K., Kawakami, S. Three-Dimensional Imaging of the Intracellular Fate of Plasmid DNA and Transgene Expression: ZsGreen1 and Tissue Clearing Method CUBIC Are an Optimal Combination for Multicolor Deep Imaging in Murine Tissues. PLoS One. 11 (1), e0148233 (2016).
  4. Yoshino, H., Hashizume, K., Kobayashi, E. Naked plasmid DNA transfer to the porcine liver using rapid injection with large volume. Gene Ther. 13 (24), 1696-1702 (2006).
  5. Kamimura, K., Suda, T., Xu, W., Zhang, G., Liu, D. Image-guided, lobe-specific hydrodynamic gene delivery to swine liver. Mol Ther. 17 (3), 491-499 (2009).
  6. Kamimura, K., Zhang, G., Liu, D. Image-guided,intravascular hydrodynamic gene delivery to skeletal muscle in pigs. Mol Ther. 18 (1), 93-100 (2010).
  7. Suda, T., Liu, D. Hydrodynamic gene delivery: its principles and applications. Mol.Ther. 15 (12), 2063-2069 (2007).
  8. Alino, S. F., et al. Naked DNA delivery to whole pig cardiac tissue by coronary sinus retrograde injection employing non-invasive catheterization. J Gene Med. 12 (11), 920-926 (2010).
  9. Suda, T., Gao, X., Stolz, D. B., Liu, D. Structural impact of hydrodynamic injection on mouse liver. Gene Ther. 14 (2), 129-137 (2007).
  10. Skrypnyk, N. I., Harris, R. C., de Caestecker, M. P. Ischemia-reperfusion model of acute kidney injury and post injury fibrosis in mice. J Vis Exp. (78), (2013).
  11. Woodard, L. E., et al. Kidney-specific transposon-mediated gene transfer in vivo. Sci Rep. 7, 44904 (2017).
  12. Liang, A., et al. Loss of glutathione S-transferase A4 accelerates obstruction-induced tubule damage and renal fibrosis. Journal of Pathology. 228 (4), 448-458 (2012).
  13. Liang, M., et al. Protective role of insulin-like growth factor-1 receptor in endothelial cells against unilateral ureteral obstruction-induced renal fibrosis. Am J Pathol. 185 (5), 1234-1250 (2015).
  14. Corridon, P. R., et al. A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors. Am J Physiol Renal Physiol. 304 (9), F1217-F1229 (2013).
  15. Wallace, D. P., et al. Tracking kidney volume in mice with polycystic kidney disease by magnetic resonance imaging. Kidney Int. 73 (6), 778-781 (2008).
  16. Woodard, L. E., Wilson, M. H. piggyBac-ing models and new therapeutic strategies. Trends Biotechnol. 33 (9), 525-533 (2015).
  17. Yeikilis, R., et al. Hydrodynamics based transfection in normal and fibrotic rats. World J Gastroenterol. 12 (38), 6149-6155 (2006).
  18. Thalhofer, C. J., et al. In vivo imaging of transgenic Leishmania parasites in a live host. J Vis Exp. (41), (2010).
  19. Wooddell, C. I., et al. Muscle damage after delivery of naked plasmid DNA into skeletal muscles is batch dependent. Hum Gene Ther. 22 (2), 225-235 (2011).
  20. Crespo, A., et al. Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles. Gene Ther. 12 (11), 927-935 (2005).
  21. Rocca, C. J., Ur, S. N., Harrison, F., Cherqui, S. rAAV9 combined with renal vein injection is optimal for kidney-targeted gene delivery: conclusion of a comparative study. Gene Ther. 21 (6), 618-628 (2014).
check_url/es/56324?article_type=t

Play Video

Citar este artículo
Woodard, L. E., Welch, R. C., Williams, F. M., Luo, W., Cheng, J., Wilson, M. H. Hydrodynamic Renal Pelvis Injection for Non-viral Expression of Proteins in the Kidney. J. Vis. Exp. (131), e56324, doi:10.3791/56324 (2018).

View Video