Summary

Дизайн и синтез аккордеон Шкаф реконфигурируемых ДНК

Published: August 15, 2018
doi:

Summary

Мы описываем подробный протокол для проектирования, моделирования, мокрый лабораторных экспериментов и анализа для реконфигурируемых ДНК аккордеон Шкаф 6 на 6 сеток.

Abstract

ДНК, на основе наноструктурированных механических систем или ДНК наномашины, который производят сложные наноразмерных движения в 2D и 3D в нанометровом Ангстрем резолюции, показывает большой потенциал в различных областях нанотехнологий как молекулярные реакторов, Доставка лекарств, и nanoplasmonic систем. Реконфигурируемые ДНК Аккордеонный стойку, который коллективно могут манипулировать 2D или 3D наноразмерных сетевых элементов, в несколько этапов в ответ на ввод ДНК, описан. Платформа имеет потенциал для увеличения количество элементов, которые наномашин ДНК может контролировать от нескольких элементов в масштабе сети с несколькими этапов реорганизации.

В настоящем протоколе мы описывают весь экспериментальный процесс реконфигурируемых аккордеонных стойки ДНК 6 на 6 сеток. Протокол включает в себя дизайн правила и моделирования процедура структур и мокрой лаборатории эксперимента для синтеза и реконфигурации. Кроме того анализ структуры с использованием ТЕА (просвечивающей электронной микроскопии) и лад (передачи энергии резонансной флюоресценции) включен в протокол. Роман методы проектирования и моделирования, охватываемых в настоящем протоколе будет оказывать помощь исследователям использовать ДНК аккордеонных стойку для дальнейшего применения.

Introduction

Механические системы, основанные на ДНК наноструктур или ДНК наномашин1,2,3,,45 являются уникальными, поскольку они производят сложные наноразмерных движения в 2D и 3D в нанометровом для Ангстрем резолюция, согласно различным биомолекулярных раздражители2,3,6. Подключая функциональных материалов на этих структур и контролируя их позиции, эти структуры могут применяться в различных областях. Например ДНК наномашин были предложены для молекулярной реактора7, наркотиков доставки8и nanoplasmonic систем в9,10.

Ранее мы внедрили перестраиваемой ДНК Аккордеонный стойку, которой можно манипулировать в 2D или 3D сети наноразмерных элементов11 (рис. 1A). В отличие от других ДНК наномашины, что контролировать только несколько элементов платформы можно коллективно управлять периодически выстроились 2D или 3D элементы в различных стадиях. Мы ожидаем, что программируемый химические и биологические реакции сети или молекулярные вычислительной системы может быть построен из нашей системы, увеличивая количество управляемых элементов. ДНК аккордеонных стойку является структурой, в котором сеть нескольких пучков ДНК подключен к суставов, состоящий из одноцепочечной ДНК (рис. 1B). Аккордеонный стойку, порожденных ДНК балки перенастраивается ДНК замками, которые гибридизируйте важная часть балки и изменить угол между балками согласно длина моста части замков (состояние блокировки). Кроме того многоступенчатый реконфигурации проявляется путем добавления новых замков после формирования свободного государства путем отсоединения замки ДНК через нити на основе зацепки перемещения12,13.

В этом протоколе мы описывают весь процесс проектирования и синтез реконфигурируемых ДНК аккордеонных стойки. Протокол включает в себя проектирование, моделирование, мокрый лабораторных экспериментов и анализ для синтеза ДНК аккордеонных стойки 6 на 6 сеток и реорганизации этих. Структура, охваченных Протоколом является базовой модели предыдущих исследований11 и 65 нм по 65 нм в размер, состоящий из 14 балки. С точки зрения проектирования и моделирования конструкции аккордеона стойки отличается от обычных ДНК оригами14,15 (т.е., плотно упакованы). Таким образом от традиционных методов были изменены правила, касающиеся конструкции и молекулярного моделирования. Для демонстрации, мы показываем методика проектирования, используя модифицированный подход caDNAno14 и моделирование аккордеонных стойки, с помощью oxDNA16,17 с дополнительных скриптов. Наконец описаны оба протокола ТЕА и лад для анализа структур настроенных аккордеонных стойку.

Protocol

1. дизайн 6 по 6 ДНК аккордеон стойку с caDNAno14 Скачать и установить caDNAno 2.0 программного обеспечения14 дизайн аккордеона стойку ДНК (caDNAno 2.5 также доступна на https://github.com/cadnano/cadnano2.5). Откройте caDNAno14 и нажмите Квадрат инструмент , чтобы добавит?…

Representative Results

Аккордеонный стойку разработан 6 по 6 ДНК моделируется от16,oxDNA17 и результаты показаны на рисунке 6. В результате моделирования было подтверждено, что предполагаемой структуры формируется без искажения структуры. <p class="j…

Discussion

Этот протокол вводит весь процесс от проектирования, моделирования, синтеза и анализа основных 2D ДНК аккордеонных стойки. Модифицированный дизайн и моделирование правила были описаны потому что правило дизайн отличается от стандартных ДНК-оригами, в том, что ДНК аккордеон Шкаф имеет д…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

Это исследование было частично поддерживается глобальной программы центр исследований развития через Национальный исследовательский фонд Korea(NRF) финансируется министерством науки и ИКТ (MSIT) (2015K1A4A3047345) и Nano· Программа развития технологии материал через национальных исследований фонда из Кореи (NRF) финансируется министерством науки и ИКТ (MSIT) (2012M3A7A9671610). Институт инженерных исследований в Сеульском национальном университете представила научно-исследовательских учреждений для этой работы. Авторы признают благодарность Tae-Янг Юн (биологических наук, Сеульский Национальный университет) относительно флуоресцентной спектроскопии для анализа ладу.

Materials

M13mp18 Single-stranded DNA NEB N4040s
1M MgCl2 Solution Biosesang M2001
Tris-EDTA buffer Biosesang T2142
Nuclease-Free Water Qiagen 129114
5M Sodium Chloride solution Biosesang s2007
PEG 8000 Sigma Aldrich 1546605
10N NaOH Biosesang S2038
Uranyl formate Thomas Science C993L42
Thermal cycler C1000 Biorad
Nanodropic 2000 Thermo Fisher Scientific
TEM (LIBRA 120)   Carl Zeiss
Fluorometer Enspire 2300 Perkin-Elmer
Centrifuge Labogene LZ-1580

Referencias

  1. Andersen, E. S., et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 459 (7243), 73-76 (2009).
  2. Cha, T. -. G., et al. Design principles of DNA enzyme based walkers: Translocation kinetics and photo-regulation. Journal of the American Chemical Society. 137 (29), 9429-9437 (2015).
  3. Gerling, T., Wagenbauer, K. F., Neuner, A. M., Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science. 347 (6229), 1446-1452 (2015).
  4. Pinheiro, A. V., Han, D., Shih, W. M., Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nature nanotechnology. 6 (12), 763-772 (2011).
  5. Li, J., et al. Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat. Nature Nanotechnology. 1, (2018).
  6. Krishnan, Y., Simmel, F. C. Nucleic acid based molecular devices. Angewandte Chemie International Edition. 50 (14), 3124-3156 (2011).
  7. Liu, M., et al. A DNA tweezer-actuated enzyme nanoreactor. Nature communications. 4, 2127 (2013).
  8. Douglas, S. M., Bachelet, I., Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science. 335 (6070), 831-834 (2012).
  9. Kuzyk, A., et al. Reconfigurable 3D plasmonic metamolecules. Nature Materials. 13 (9), 862-866 (2014).
  10. Zhou, C., Duan, X., Liu, N. A plasmonic nanorod that walks on DNA origami. Nature communications. 6, 8102 (2015).
  11. Choi, Y., Choi, H., Lee, A. C., Lee, H., Kwon, S. A Reconfigurable DNA Accordion Rack. Angewandte Chemie International Edition. 57 (11), 2811-2815 (2018).
  12. Chen, H., et al. Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of their Folding and Unfolding Reconfiguration. Journal of the American Chemical Society. 136 (19), 6995-7005 (2014).
  13. Han, D., Pal, S., Liu, Y., Yan, H. Folding and cutting DNA into reconfigurable topological nanostructures. Nature Nanotechnology. 5 (10), 712-717 (2010).
  14. Douglas, S. M., et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Research. 37 (15), 5001-5006 (2009).
  15. Castro, C. E., et al. A primer to scaffolded DNA origami. Nature methods. 8 (3), 221-229 (2011).
  16. Ouldridge, T. E., Louis, A. A., Doye, J. P. K. DNA Nanotweezers Studied with a Coarse-Grained Model of DNA. Physical Review Letters. 104 (17), 178101 (2010).
  17. Snodin, B. E. K., et al. Direct Simulation of the Self-Assembly of a Small DNA Origami. ACS Nano. 10 (2), 1724-1737 (2016).
  18. Amir, Y., Abu-Horowitz, A., Bachelet, I. Folding and Characterization of a Bio-responsive Robot from DNA Origami. Journal of Visualized Experiments. (106), e51272 (2015).
  19. Stahl, E., Martin, T. G., Praetorius, F., Dietz, H. Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions. Angewandte Chemie International Edition. 53 (47), 12735-12740 (2014).
  20. Wei, B., Vhudzijena, M. K., Robaszewski, J., Yin, P. Self-assembly of Complex Two-dimensional Shapes from Single-stranded DNA Tiles. Journal of Visualized Experiments. (99), e52486 (2015).
  21. Clegg, R. M. Fluorescence resonance energy transfer and nucleic acids. Methods in enzymology. 211, 353-388 (1992).
  22. Kopperger, E., et al. A self-assembled nanoscale robotic arm controlled by electric fields. Science. 359 (6373), 296-301 (2018).
  23. Lauback, S., et al. Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers. Nature Communications. 9 (1), 1446 (2018).
check_url/es/58364?article_type=t

Play Video

Citar este artículo
Choi, Y., Choi, H., Lee, A. C., Kwon, S. Design and Synthesis of a Reconfigurable DNA Accordion Rack. J. Vis. Exp. (138), e58364, doi:10.3791/58364 (2018).

View Video