Summary

[18f] fdg 示踪剂在重型颅脑损伤患者中的半定量评价

Published: November 09, 2018
doi:

Summary

[18f]-氟脱氧葡萄糖 (fdg) 正电子发射断层扫描断层扫描可用于研究与大脑功能相关的葡萄糖代谢。在这里, 我们提出了一个协议 [18f] fdg 示踪剂设置和半定量评估的目标大脑区域的利益区域分析与临床表现相关的严重创伤性脑损伤患者。

Abstract

严重创伤性脑损伤 (stbi) 患者很难知道他们是否准确地表达自己的想法和情绪, 因为意识障碍, 大脑功能紊乱, 和语言障碍。由于沟通能力不足, 需要对家庭成员、医务人员和照顾者进行客观评价。其中一个评估是对大脑功能区域的评估。近年来, 多模态脑成像被用来探索受损大脑区域的功能。[18f]-氟脱氧葡萄糖正电子发射断层扫描断层扫描 ([18f] fdg-pet/ct) 是检查大脑功能的成功工具。然而, 基于 [18f] fdg-pet变 ct 的脑葡萄糖代谢评估没有标准化, 取决于几个不同的参数, 以及患者的情况。在这里, 我们描述了一系列半定量的评估协议, 用于使用 stbi 患者中自行生成的 [18 f] fdg 跟踪器进行感兴趣区域 (roi) 图像分析。该协议的重点是筛选参与者, 准备 [18f] fdg 跟踪器在热实验室, 安排获取 [18f] fdg-pet变 ct 脑图像, 并使用来自目标大脑区域的 roi 分析测量葡萄糖代谢。

Introduction

stbi 患者在康复过程中会出现不可预见的神经困难, 包括运动缺陷、感官缺陷和精神不稳定1。虽然临床评估通常是口头进行的, 但 stbi 患者如无反应的清醒综合征或最低意识状态的患者在了解他们是否准确表达自己的想法和情绪方面有特别的困难由于意识障碍, 大脑功能紊乱, 和言语干扰2,3。家庭成员、医务人员和照顾者有时会被不可预见的神经变化或由于沟通能力不足导致的缺乏反应所迷惑。

近年来, 多模态脑成像被用于探索区域脑功能6789。大脑是葡萄糖衍生能量的主要消耗者, 葡萄糖代谢提供了大约95% 的三磷酸腺苷 (atp), 大脑功能10。[18f]-氟脱氧葡萄糖 (fdg) 的摄取是脑组织摄取葡萄糖的标志物。[18楼]fdg-pet/ct 可以检测 [18f] fdg 的吸收, 因此是检查大脑功能11的有用工具.一般情况下, [18f] fdg 图像分析分为两类: roi 分析和基于体素的分析 (vba)12。此前的报告显示, 投资回报率分析是研究创伤特定区域的首选。这是因为 vba (如统计参数映射 [spm]) 需要对标准大脑进行协同和归一化, 而 tbi 由于脑组织变形 (如脑组织萎缩、肿胀、扩大和收缩) 而无法很好地工作。心室空间7,12。虽然已经开发了各种算法和软件来分析磁共振成像 (mri) 数据, 但神经外科和整形外科中使用的金属会产生噪音文物7,12,13.近年来, 利用光电倍增器与 pet/ct 装置, 提高了 petct 衍生脑图像14的空间分辨率。目前的协议侧重于在 stbi 患者中使用自生成的 [18f] fdg 示踪剂,通过[18f] fdg-petct 中的 roi 分析对葡萄糖摄入量进行半定量测量。

Protocol

这项研究是根据机构审查委员会 (第07-01号核准书) 进行的, 并遵守了《赫尔辛基宣言》的原则。患者的法律代表对病历和脑图像的使用获得了知情同意。这项研究是在机构道德委员会 (2017-14) 批准后进行的。该议定书是根据日本核医学学会和欧洲核医学协会的指导方针制定的, 作为参考 15,16。 1. 对参与者的筛选 从患者的法律?…

Representative Results

一名 6 3岁的男子在骑自行车时被汽车撞倒,经救护车被送往急诊室。检查显示格拉斯哥昏迷量表得分为 7 (开眼 = 1, 最佳言语反应 = 2, 最佳运动反应 = 4), 厌食症 (右: 2 毫米, 左: 3 毫米), 和负角膜反应17。头部 ct 显示蛛网膜下腔和颅内出血, 左合子、颞骨和顶骨颅骨骨折。病人没有病史, 管理保守。9个月后, 他被千叶县创伤性亚马病康复中心收治。入?…

Discussion

该协议提供了在一个机构中使用自生成的 [18f] fdg 示踪剂与 [18f] fdg-etpct 进行一系列脑葡萄糖代谢评估的方法。

[18f] fdg 示踪剂的生产遵循 fdg 合成器操作手册中描述的程序;然而, 谨慎对待三点是必要的。首先, 轰炸时间和能量 (步骤 2.5) 应根据患者人数进行调整。其次, 应注意 4, 7, 13, 16, 21, 24-己 aoxa-1, 10 diazabicyclo[8.8.8]hexacosane 的管, 因为它可以很容易地?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

提交人希望感谢索森医院的 uchino 医生的所有手术。作者还感谢来自 edanz 集团 (www.edanzediting.com/ac) 的亚当·菲利普斯编辑了这份手稿的草稿。

Materials

20ml syringe Terumo SS-20ESZ
10ml syringe Terumo SS-10ESZ
1ml syringe Terumo SS-01T
Protective plug Top ML-KS
Three-way cock L type 180° Terumo TS-TL2K
Extension tube Top X1-50
Indwelling needle 22G or 24G Terumo SR-OT2225C
Tegaderm transparent dressing 3M 1624W
Hepaflash 10U/ml 10ml Terumo PF-10HF10UA
Auto dispensing and injection system Universal Giken Co., Ltd. UG-01
Fluid for auto dispensing and injection system Universal Giken Co., Ltd. UG-01-001
Millex-GS Syringe Filter Unit Millipore SLGSV255F
Air needle Terumo XX-MFA2038
Check valve Hakko 23310100
Saline 500ml HIKARI pharmaceutical Co., Ltd. 18610155-3
Yukiban 25x7mm Nitto 3252
Elascot No.3 Alcare 44903221
Presnet No.3 27x20mm Alcare 11674
Steri Cotto a 4x4cm Kawamoto 023-720220-00
StatstripXp3 Nova Biomedical 11-110
Statstrip Glucose strips Nova Biomedical 11-106
JMSsheet JMS JN-SW3X
Injection pad Nichiban No.30-N
Stepty Nichiban No.80
Advantage Workstation GE Healthcare Volume Share 7. version 4.7
Discovery MI PET/CT GE Healthcare
EV Insite PSP
GE TRACERlab MXFDG synthesizer reagent kit ABX K-105TM
TRACERlab MXFDG cassette GE Healthcare P5150ME
Extension tube Universal Giken Co., Ltd AT511-ST-001
TSK sterilized injection needle 18×100 Tochigiseiko AT511-ST-004
TSK sterilized injection needle 18×60 Tochigiseiko AT511-ST-002
TSK sterilized injection needle 21×65 Tochigiseiko AT511-ST-003
Seal sterile vial -N 5ml Mita Rika Kogyo Co., Ltd. SSVN5CBFA
k222 TLC plate Universal Giken Co., Ltd. AT511-01-005
Anion-cation test paper Toyo Roshi Kaisha 7030010
Endospecy ES-24S set Seikagaku corporation 20170
Sterile evacuated vial Gi phama 10214
5ml syringe Terumo SS-05SZ
Extension tube Top X-120
Finefilter F Forte grow medical Co.Ltd. F162
Millex FG Merck SLFG I25 LS
Vented Millex GS Merck SLGS V25 5F
Injection needle 18×38 Terumo NN-1838R
Injection needle 21×38 Terumo NN-2138R
Water-18O Taiyo Nippon Sanso F03-0027
Distilled water Otsuka phrmaceutical
Hydrogen gas G1 Hosi Iryou Sanki
Helium gas G1 Hosi Iryou Sanki
Nitrogen G1 Hosi Iryou Sanki
TRACERlabMXFDG GE Healthcare
Sep-Pak Light Accell Plus QMA WATERS
Sep-Pak Plus tC18 WATERS
Sep-Pak Plus Alumina N WATERS
HPLC with 3.9 X 300 mm columns WATERS
US-2000 Universal Giken CO. Ltd.
Kryptofix222 Merck
EG Reader SV-12 Seikagaku Corporation
UG-01 Universal Giken Co., Ltd.
syngo.via Siemens Healthineers
Advantage Workstation Volume Share 7, version 4.7 GE Healthcare
Q clear GE Healthcare
CRC-15PET dose calibrator CAPINTEC, INC.

Referencias

  1. Godbolt, A. K., et al. Disorders of consciousness after severe traumatic brain injury: a Swedish-Icelandic study of incidence, outcomes and implications for optimizing care pathways. Journal of Rehabilitation Medicine. 45 (8), 741-748 (2013).
  2. Klingshirn, H., et al. Quality of evidence of rehabilitation interventions in long-term care for people with severe disorders of consciousness after brain injury: A systematic review. Journal of Rehabilitation Medicine. 47 (7), 577-585 (2015).
  3. Fischer, D. B., Truog, R. D. What is a reflex? A guide for understanding disorders of consciousness. Neurology. 85 (6), 543-548 (2015).
  4. Klingshirn, H., et al. RECAPDOC – a questionnaire for the documentation of rehabilitation care utilization in individuals with disorders of consciousness in long-term care in Germany: development and pretesting. BMC Health Services Research. 18 (1), 329 (2018).
  5. Stéfan, A., Mathé, J. F. SOFMER group. What are the disruptive symptoms of behavioral disorders after traumatic brain injury? A systematic review leading to recommendations for good practices. Annals of Physical and Rehabilitation. 59, 5-17 (2016).
  6. Liu, S., et al. Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Informatics. 2 (3), 167-180 (2015).
  7. Wong, K. P., et al. A semi-automated workflow solution for multimodal neuroimaging: application to patients with traumatic brain injury. Brain Informatics. 3 (1), 1-15 (2016).
  8. Chennu, S., et al. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness. Brain. 140 (8), 2120-2132 (2017).
  9. Di Perri, C., et al. Neural correlates of consciousnes s in patients who have emerged from a minimally conscious state: a cross-sectional multimodal imaging study. The Lancet Neurology. 15 (8), 830-842 (2016).
  10. Erecińska, M., Silver, I. A. ATP and brain function. Journal of Cerebral Blood Flow & Metabolism. 9 (1), 2-19 (1989).
  11. Lundgaard, I., et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications. 6, 6807 (2015).
  12. Byrnes, K. R., et al. FDG-PET imaging in mild traumatic brain injury: a critical review. Frontiers in Neuroenergetics. 5, 13 (2014).
  13. Mortensen, K. N., et al. Impact of Global Mean Normalization on Regional. Glucose Metabolism in the Human Brain. Neural Plasticity. , 6120925 (2018).
  14. Wagatsuma, K., et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Physica Medica. 42, 203-210 (2017).
  15. Fukukita, H., et al. Japanese guideline for the oncology FDG-PET/CT data acquisition protocol: synopsis of Version 2.0. Annals of Nuclear Medicine. 28 (7), 693-705 (2014).
  16. Varrone, A., et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. European Journal of Nuclear Medicine and Molecular Imaging. 36 (12), 2103-2110 (2009).
  17. Teasdale, G., Jennett, B. Assessment of coma and impaired consciousness. A practical scale. The Lancet. 2 (7872), 81-84 (1974).
  18. Valadka, A. B., Moore, E. J., Feliciano, D. V., Moore, E. E. Injury to the cranium. Trauma. , 377-399 (2000).
  19. Carney, N., et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery. 80 (1), 6-15 (2017).
  20. Giacino, J. T., Kalmar, K., Whyte, J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Archives of Physical Medicine and Rehabilitation. 85 (12), 2020-2029 (2004).
  21. Schnakers, C., et al. The Nociception Coma Scale: a new tool to assess nociception in disorders of consciousness. Pain. 148 (2), 215-219 (2010).
  22. Shiel, A., et al. The Wessex Head Injury Matrix (WHIM) main scale: a preliminary report on a scale to assess and monitor patient recovery after severe head injury. Clinical Rehabilitation. 14 (4), 408-416 (2000).
  23. GE Healthcare. . TRACERlabMXFDG operator manual, Version 1. , (2003).
  24. Yamaki, T., et al. Association between uncooperativeness and the glucose metabolism of patients with chronic behavioral disorders after severe traumatic brain injury: a cross-sectional retrospective study. BioPsychoSocial Medicine. 12, 6 (2018).
  25. Schwaiger, M., Wester, H. J. How many PET tracers do we need?. Journal of Nuclear Medicine. 52, (2011).
check_url/es/58641?article_type=t

Play Video

Citar este artículo
Yamaki, T., Onodera, S., Uchida, T., Ozaki, Y., Yokoyama, K., Henmi, H., Kamezawa, M., Hayakawa, M., Itou, D., Oka, N., Odaki, M., Iwadate, Y., Kobayashi, S. Semi-quantitative Assessment Using [18F]FDG Tracer in Patients with Severe Brain Injury. J. Vis. Exp. (141), e58641, doi:10.3791/58641 (2018).

View Video