Summary

Invasive Hemodynamic Assessment for the Right Ventricular System and Hypoxia-Induced Pulmonary Arterial Hypertension in Mice

Published: October 24, 2019
doi:

Summary

Here, we present a protocol to perform an invasive hemodynamic assessment of the right ventricle and pulmonary artery in mice using an open-chest surgery approach.

Abstract

Pulmonary arterial hypertension (PAH) is a chronic and severe cardiopulmonary disorder. Mice are a popular animal model used to mimic this disease. However, the evaluation of right ventricular pressure (RVP) and pulmonary artery pressure (PAP) remains technically challenging in mice. RVP and PAP are more difficult to measure than left ventricular pressure because of the anatomical differences between the left and right heart systems. In this paper, we describe a stable right heart hemodynamic measurement method and its validation using healthy and PAH mice. This method is based on open-chest surgery and mechanical ventilation support. It is a complicated procedure compared to closed chest procedures. While a well-trained surgeon is required for this surgery, the advantage of this procedure is that it can generate both RVP and PAP parameters at the same time, so it is a preferable procedure for the evaluation of PAH models.

Introduction

Pulmonary arterial hypertension (PAH) is a chronic and severe cardiopulmonary disorder with elevation in pulmonary artery pressure (PAP) and right ventricular pressure (RVP) that is caused by cellular proliferation and fibrosis of small pulmonary arteries1. Pulmonary artery catheters, also called Swan-Ganz catheters2, are commonly used in the clinical monitoring of RVP and PAP. Furthermore, a wireless PAP monitoring system has been used clinically3,4,5. To mimic the disease for study in mice, a hypoxic environment is used to simulate human clinical manifestations of PAH6. In the evaluation of PAP in animals, large animals are relatively easy to monitor through pulmonary artery catheters using the same technique as for human subjects, but small animals such as rats and mice are difficult to assess because of their small body size. Hemodynamic measurement of the right ventricular system in mice is possible with an ultrasmall size 1 Fr catheter7. A method for measuring RVP and PAP in mice has been reported in the literature8,9, but the methodology lacks a detailed description. RVP and PAP are more challenging to measure than left ventricular pressure because of the anatomical differences between the left and right heart systems.

To get both PAP and RVP parameters in the same mouse, we describe an open-chest surgery-based approach for right heart hemodynamic measurements, its validation with healthy and PAH mice, and how to avoid generating artificial data during the complicated open-chest surgery. Although this technique is best performed by a well-trained surgeon, it has the advantage of being able to assess PAP and RVP in the same mouse.

Protocol

The animal protocol was reviewed and approved by the Institutional Animal Care and Use Committee at Fuwai Hospital, Chinese Academy of Medical Science, Peking Union Medical College (NO.0000287). The experimental animals were housed and fed according to the guidelines of animal welfare in China. NOTE: Eight- to 12-week-old male C57BL mice were housed in an environment with a 12 h dark/ 12 h light cycle. The PAH mice were housed for 4 weeks under an oxygen concentration of 10%, maintained by an …

Representative Results

The pressure transducer catheter was inserted into the right ventricle (Figure 3A) through a tunnel expanded by a 25 G needle, and a typical RVP waveform (Figure 3C) was obtained. The catheter was continually adjusted and slowly advanced and kept in the same axis as the pulmonary artery while passing through the pulmonary valve (Figure 3B). When the pressure sensor was successfully …

Discussion

Tracheal intubation is the first important step for open-chest surgeries. The classic method of tracheal intubation for small animals, such as rats or mice, involves making a T-shaped incision on the trachea and directly inserting Y-type tracheal tubing into the trachea. In practice, we find that this method is not easy during operation. The Y-type tracheal tubing is too large for small animals and forms an angle with the trachea. Thus, it is difficult to fix the tubing in place. Additionally, once the intubation tubing …

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This research is supported by the Postgraduate Education and Teaching Reform Project of Peking Union Medical College (10023-2016-002-03), the Fuwai Hospital Youth Fund (2018-F09), and the Director Fund of Beijing Key Laboratory of Pre-clinical Research and Evaluation for Cardiovascular Implant Materials (2018-PT2-ZR05).

Materials

2,2,2-Tribromoethanol Sigma-Aldrich T48402-5G For anesthesia
Animal temperature controller Physitemp Instruments, Inc. TCAT-2LV For temperature control
Dissection forceps Fine Science Tools, Inc. 11274-20 For surgery
Gemini Cautery System Gemini GEM 5917 For surgery
Intravenous catheter (22G) BD angiocath 381123 For intubation
LabChart 7.3 ADInstruments For data analysis
Light illumination system Olympus For surgery
Mikro-Tip catheter Millar Instruments, Houston, TX SPR-1000 For pressure measurement
Millar Pressure-Volume Systems Millar Instruments, Houston, TX MVPS-300 For pressure measurement
O2 Controller and Hypoxia chamber Biospherix ProOx 110 For chronic hypoxia
PowerLab Data Acquisition System ADInstruments PowerLab 16/30 For data recording
Scissors Fine Science Tools, Inc. 14084-08 For surgery
Small animal ventilator Harvard Apparatus Mini-Vent 845 For surgery
Stereomicroscope Olympus SZ61 For surgery
Surgery tape 3M For surgery
Terg-a-zyme enzyme Sigma-Aldrich Z273287-1EA For catheter cleaning

Referencias

  1. Humbert, M., et al. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation. 130 (24), 2189-2208 (2014).
  2. Chatterjee, K. The Swan-Ganz catheters: past, present, and future: a viewpoint. Circulation. 119 (1), 147-152 (2009).
  3. Adamson, P. B., et al. CHAMPION trial rationale and design: the long-term safety and clinical efficacy of a wireless pulmonary artery pressure monitoring system. Journal of Cardiac Failure. 17 (1), 3-10 (2011).
  4. Abraham, W. T., et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. The Lancet. 377 (9766), 658-666 (2011).
  5. Adamson, P. B., et al. Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circulation: Heart Failure. 7 (6), 935-944 (2014).
  6. Shatat, M. A., et al. Endothelial Kruppel-like Factor 4 modulates pulmonary arterial hypertension. American Journal of Respiratory Cell and Molecular Biology. 50 (3), 647-653 (2014).
  7. . SPR-1000 Mouse Pressure Catheter Available from: https://millar.com/products/research/pressure/single-pressure-no-lumen/spr-1000 (2019)
  8. Tabima, D. M., Hacker, T. A., Chesler, N. C. Measuring right ventricular function in the normal and hypertensive mouse hearts using admittance-derived pressure-volume loops. American Journal of Physiology Heart and Circulatory Physiology. 299 (6), 2069-2075 (2010).
  9. Skuli, N., et al. Endothelial deletion of hypoxia-inducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis. Blood. 114 (2), 469-477 (2009).
  10. . LabChart Available from: https://www.adinstruments.com/products/labchart?creative=290739105773_keyword=labchart_matchtype=e_network=g_device=c_gclid=CjwKCAjwxrzoBRBBEiwAbtX1n42I2S06KmccVncUHkmExU8KKOXXREyzx8bvTrxYMSze-ooE0atcbRoCliwQAvD_BwE (2019)
  11. Marius, M. H., et al. Definitions and diagnosis of pulmonary hypertension. Journal of the American College of Cardiology. 62 (25), 42-50 (2013).
  12. Ciuclan, L., et al. A novel murine model of severe pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine. 184 (10), 1171-1182 (2011).
  13. Brown, R. H., Walters, D. M., Greenberg, R. S., Mitzner, W. A. A method of endotracheal intubation and pulmonary functional assessment for repeated studies in mice. Journal of Applied Physiology. 87 (6), 2362-2365 (1999).
  14. Chen, W. C., et al. Right ventricular systolic pressure measurements in combination with harvest of lung and immune tissue samples in mice. Journal of Visualized Experiments. (71), 50023 (2013).
  15. Ma, Z., Mao, L., Rajagopal, S. Hemodynamic characterization of rodent models of pulmonary arterial hypertension. Journal of Visualized Experiments. (110), 53335 (2016).
  16. Chen, M. Berberine attenuates hypoxia-induced pulmonary arterial hypertension via bone morphogenetic protein and transforming growth factor-β signaling. Journal of Cellular Physiology. , (2019).
  17. Bueno-Beti, C., Hadri, L., Hajjar, R. J., Sassi, Y., Ishikawa, K. The Sugen 5416/Hypoxia mouse model of pulmonary arterial hypertension. Experimental Models of Cardiovascular Diseases. Methods in Molecular Biology. vol 1816. , (2018).
check_url/es/60090?article_type=t

Play Video

Citar este artículo
Luo, F., Wang, X., Luo, X., Li, B., Zhu, D., Sun, H., Tang, Y. Invasive Hemodynamic Assessment for the Right Ventricular System and Hypoxia-Induced Pulmonary Arterial Hypertension in Mice. J. Vis. Exp. (152), e60090, doi:10.3791/60090 (2019).

View Video